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In this thesis, we show how to combine microfluidics and feedback control to

independently steer multiple particles with micrometer accuracy in two dimensions.

The particles are steered by creating a fluid flow that carries all the particles from

where they are to where they should be at each time step. Our control loop comprises

sensing, computation, and actuation to steer particles along user-input trajectories.

Particle positions are identified in real-time by an optical system and transferred to

a control algorithm that then determines the electrode voltages necessary to create

a flow field to carry all the particles to their next desired locations. The process

repeats at the next time instant.



Our method achieves inexpensive steering of particles by using conventional

electroosmotic actuation in microfluidic channels. This type of particle steering has

significant advantages over other particle steering methods, such as laser tweezers.

(Laser tweezers cannot steer reflective particles, or particles where the index of re-

fraction is lower than that of the surrounding medium. More sophisticated optical

vortex holographic tweezers require that the index of refraction does not differ sub-

stantially from that of the surrounding medium.). In this thesis, we address three

specific aspects of this technology. First, we develop the control algorithms for

steering multiple particles independently and validate our control techniques using

simulations with realistic sources of initial position errors and system uncertainties.

Second, we develop optimal path planning methods to efficiently steer particles be-

tween given initial and final positions. Third, we design high performance microflu-

idic devices that are capable of simultaneously steering five particles in experiment.

(Steering of up to three particles in experiment had been previously demonstrated
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Chapter 1

Introduction

1.1 Background

The ability to steer individual particles inside microfluidic systems is useful

for navigating particles to localized sensors, cell sorting, sample preparation, and

combinatorial testing of particle interactions with other particles, with chemical

species, and with distributed sensors. A variety of methods are currently used to

manipulate particles inside microfluidic systems: individual particles can be steered

by laser tweezers [2], [3], [4]; they can be trapped, and steered to some degree,

by dielectrophoresis (DEP) [5], [6], [7]; and by traveling-wave-dielectrophoresis [7],

[8]; held by acoustic traps [9]; steered by manipulating magnets attached to the

particles [10]; and guided by MEMS pneumatic array [11]. Cohen [12], [13] uses a

similar feedback control approach, invented independently after ours, to trap and

steer a single particle, by using electroosmotic or electrophoretic actuation.

Of these methods, laser tweezers are the gold standard for single particle ma-

nipulation. Askin’s survey article [2] provides a history of optical trapping of small

neutral particles, atoms, and molecules. Current laser tweezer systems can create

up to four hundred three-dimensional traps, they can trap particles ranging in size

from tens of nanometers to tens of micrometers, and trapping forces can exceed 100

pN with resolutions as fine as 100 aN, and the positioning accuracy can be below
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tens of nanometers[3], [14]. However, optical tweezers require lasers and delicate

optics, they are expensive, and the whole system is unlikely to be miniaturized into

a hand-held format. An additional disadvantage of laser tweezers is that it can only

be used to steer particles with a refractive index greater than that of the surrounding

medium. For example, in the quantum chip project at University of Maryland, laser

tweezers cannot be used to steer quantum dots to place them at precise locations

on a substrate. The aforementioned methods (DEP, acoustic traps, manipulation

via attached magnets, and steering via pneumatic arrays systems) can be miniatur-

ized into handheld formats but their steering capabilities are not as sophisticated as

those of laser tweezers.

Our approach uses vision-based microflow control to steer particles by correct-

ing for particle deviations - at each time instant we create a fluid flow to move the

particles from their current position to their intented destination. This allows very

simple devices, actuated by routine methods (electroosmosis), to replicate the pla-

nar steering capabilities typically requiring laser tweezers. We have shown that our

approach permits a device with four electrodes to steer a single cell, a device with

eight electrodes to steer up to three particles, and a device with twelve electrodes

to steer up to five particles simultaneously. The method is noninvasive (the moving

fluid simply carries the particles along), the entire system can be miniaturized into

a handheld format (both the control algorithms and the optics can be integrated

onto chips), we can steer almost any kind of visible particle (neutral particles are

carried along by the electroosmotic flow, charged particles are actuated by a combi-

nation of electroosmosis and electrophoresis), and the system is cost effective (the
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most expensive part is the camera and microscope, and these will be replaced by an

on-chip optical system for the next generation of devices).

Due to the correction for errors provided by the feedback loop, the flow control

algorithm steers the particles along their desired paths even if the properties of

the particles (their charge, size, and shape) and the properties of the device and

buffer (the exact geometry, the zeta potential, pH, and other factors) are not known

precisely. The fundamental disadvantage of our approach is its lower accuracy as

compared to laser tweezers: our positioning accuracy will always be limited by

the resolution of the imaging system and by the Brownian motion that particles

experience in-between flow control corrections. Our current optical resolution is of

the order of one micron, and the Brownian drift during each control time step is

around 100 nm. In addition it is not possible to steer a large number of particles

with our method, like it is with laser tweezers.

Both feedback and microflows are essential for our particle steering capability.

Feedback is required to correct for particle position errors at each instant in time.

At the microscale, the Navier-Stokes equations reduce to a set of simpler equations

that are easy to invert and it is relatively straightforward to calculate the necessary

actuation to steer multiple particles at once. Note: The Navier-Stokes equations

governing the motion of macroflows are complex and difficult to invert making it

hard to determine the necessary actuation to steer particles.
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1.2 Thesis Outline

This thesis is concerned with discussing certain theoretical and experimental

challenges that were overcome in the course of demonstrating multi-particle steering.

Building upon chapter 1, chapter 2 presents equations governing fluid and particle

motion under electroosmotic actuation. In chapter 3, we design the control algo-

rithm to steer the particles along desired trajectories. In chapter 4 we look at a path

planning method to efficiently transport particles between given initial and final po-

sitions. Lastly, in chapter 5, we look at high performance device design to enable

demonstration of five particle steering in experiment. Several researchers have con-

tributed to different aspects of this project. Details about their contributions are

provided in the final section of this chapter.

1.3 Overview of Steering by Feedback Control

Fig. 1.1 shows the basic control idea for steering a single particle: a microflu-

idic device , an optical observation system, and a computer with a control algorithm,

are connected in a feedback loop. The vision system locates the position of the par-

ticle in real time, the computer then compares the current position of the particle

with the desired (user input) particle position, the control algorithm computes the

necessary actuator voltages that will create the electric field, or the fluid flow, that

will carry the particle to its intended location, and these voltages are applied at the

electrodes in the microfluidic device. For example, if the particle is currently north-

west of its desired location, then a south-east flow must be created. The process
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repeats at each time instant and forces the particle to follow the desired path.

Both neutral and charged particles can be steered in this way: a neutral par-

ticle is carried along by the flow that is created by electroosmotic forces, and a

charged particle is driven by a combination of electroosmotic and electrophoretic

effects. In either case, it is possible to move a particle at any location in the device,

to the north, east, south , or west by choosing the appropriate voltages at the four

electrodes. It is also possible to use this scheme to hold a particle in place - whenever

the particle deviates from its desired position, the electrodes create a correcting flow

to bring it back to its target location.

Surprisingly, it is also possible to steer multiple particles independently using

this feedback control approach [15] (see also chapter 3). A multi-electrode device

is able to actuate multiple fluid flow modes. Different modes cause particles in

different locations to move in different directions. By judiciously combining these

modes, it is possible to move all particles in the desired directions. The control

algorithm that can combine the modes in this manner is described in detail in chapter

3. The algorithm requires some knowledge of the particle and system properties

but this knowledge does not have to be precise. The reason is that feedback, the

continual comparison between the desired and actual particle positions, serves to

correct for errors and makes the system robust to experimental uncertainties. Even

though our experiments have sources of error, some of which are unavoidable, such

as variations in device geometry, parasitic pressure forces caused by surface tension

at the reservoirs, Brownian noise, and variations in zeta potentials and charges on

the particles - our control algorithm still steers all the particles along their desired

5



Figure 1.1: Feedback control particle steering approach for a single particle. A

microfluidic device with standard electroosmotic actuation is observed by a camera

that informs the control algorithm of the current particle position. The control

algorithm compares the actual position against the desired position and finds the

actuator voltages that will create a flow to steer the particles from the current

location to where it should be. The process repeats continuously until the particles

reach the destination.
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trajectories.

1.4 Author’s Contribution to Research within the Larger Team

Several graduate students within Dr. Benjamin Shapiro’s research group have

contributed to this project (Mike Armani, Zach Cummins, and Roland Probst).

This section outlines the contribution made by the author within this larger team.

The concept of microfluidic particle control was first suggested by Dr. Ben-

jamin Shapiro in 2002. Michael Armani and Roland Probst demonstrated the first

particle steering in experiments in 2003 [1] with a simple cross channel device de-

sign. This used a simple control algorithm that created a flow to the North if the

particle was to the South of its desired position (or West if it was East of its desired

position, etc.). With this simple control algorithm it was not possible to steer more

than one particle.

The equations governing electroosmotic actuation are documented in literature

[16], [17] but were applied to the situation of multiple channels feeding into a planar

control region by the author. The author created models of the electric field, fluid

dynamics, and resulting particle motion under control within the devices. He further

developed a simulation environment to develop and test strategies for control of

multiple particles. The multi-particle control algorithms that the author designed,

mathematically developed, analyzed, and validated in simulations, were then further

adapted to the experiment by Roland Probst. Probst experimentally demonstrated

three particle steering in 2005. At this stage, Zach Cummins became involved in
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the project and during his overlap with the author, Cummins improved the vision

system and created a Matlab graphical user interface for operating the setup. At

this stage, at the end of 2005, through the control theory development efforts of the

author and Roland’s contributions, we were able to control up to three particles.

Both the author and Roland Probst led a thorough investigation into the

factors that prevented steering of more than three particles in experiments. To

this end, the author proved that the maximum particle actuation speed dropped

rapidly with increase in the number of particles, and for more than three particles

the actuation was no longer sufficient to overcome the parasitic pressure flow. To

address this issue, the author redesigned the devices to enhance particle actuation

by a factor of more than five. The author, Cummins, and Probst then used these

high performance devices to demonstrate steering of five particles in an experiment.

To demonstrate steering of multiple particles it was also imperative to carefully

design the paths. Improperly designed paths would lead to actuator saturation

and subsequent loss of control. Probst and the author both worked on developing

optimal path planning methods (2007) and eventually, and independently, achieved

two different but complementary approaches. This thesis includes the research on

optimal path planning carried out by the author.

8



Chapter 2

Governing Equations

This chapter provides equations relevant to modeling the microfluidic device

in consideration. The first section of this chapter describes the physics of electroos-

mosis. The second section provides equations governing fluid motion. The third

section provides equations governing motion of microparticles in the microfluidic

device.

2.1 Physics of Electroosmosis

When a potential difference is applied across the two ends of a glass micro-

capillary filled with an aqueous buffer as shown in Fig. 2.1, the fluid inside it moves

in the direction of the electric field. This phenomenon is called electroosmosis. Elec-

troosmosis provides a very effective method of transporting fluid at the microscale

using electricity.

The mechanism of fluid transport through electroosmosis is as follows. Glass

surfaces acquire a negative surface charge when brought in contact with an elec-

trolyte (aqueous buffer solution). Chemists widely believe that this spontaneous

charging of glass surfaces is due to the deprotonation of surface groups (SiOH) on

the surface of glass [17]. The equilibrium reaction associated with this deprotonation
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Figure 2.1: This diagram illustrates the transport of fluid in a glass microcapillary

due to electroosmosis. When a potential difference is applied across a glass micro-

capillary filled with an aqueous buffer, fluid moves in the direction of the electric

field. This movement of fluid is called electroosmosis.
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can be represented as

SiOH ⇋ SiO−
+H+ (2.1)

Models describing this reaction have been proposed for several types of glass [18],

[19], [20].

The negatively charged surface attracts positive ions in the electrolyte towards

it. This electrostatic attraction combined with the random thermal motion of the

ions gives rise to an electric double layer close to the glass surface. The electrical

double layer is a region close to the charged surface where there is an excess of

positive ions over negative ions to neutralize the surface charge. Fig. 2.2 shows a

schematic of the electrical double layer [17], [21]. We may observe that if there were

no thermal motion, there would be exactly as many positive ions in the electrical

double layer as needed to balance the charge on the surface. However, because of

the finite temperature and associated random thermal motion of the ions, those

ions at the edge of the electric double layer where the electric field is weak, have

enough thermal energy to escape from the electrostatic potential well. Therefore

the edge of the double layer is considered to be at a position where the electrostatic

potential energy is approximately equal to the average thermal energy of the positive

ions (RT/2 per mole per degree of freedom). For the simple case of a symmetric

electrolyte with two monovalent ions, the characteristic thickness of the electric

double layer λD is given by [22]

λD =

(
ǫkT

2F 2c

) 1

2

, (2.2)

where ǫ is the permittivity of the liquid, k is the Boltzman constant, T is the
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Figure 2.2: Mechanism of electroosmotic actuation. The three steps in the mech-

anism are illustrated - formation of surface charge on glass, the formation of an

electrical double layer to neutralize the surface charge, and movement of the elec-

trical double layer under influence of an external electric field.
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temperature, F is Faraday’s constant, and c is the molar concentration of each

of the two ion species in the bulk. At typical biochemical, singly ionized buffer

concentrations of 10 mM and room temperature of 298 K , the electric double layer

is of the order of 10 nm thick.

When an electric field is applied tangential to the glass surface, the ions in the

diffuse electric double layer experience a electrostatic body force and move in the

direction of the electric field. This moving layer of ions in the electrical double layer

exerts a force on the bulk fluid via viscous drag resulting in a bulk flow of fluid in

the direction of the electric field. This is the mechanism of electroosmotic actuation.

In addition, it is important to note that the bulk fluid is electrically neutral

(i.e. it contains equal number of positive and negative ions), and even though these

ions move under the influence of the electric field, the viscous drag created by these

ions cancel each other with a net zero contribution to the bulk flow.

2.2 Equations Governing Fluid Motion

This section provides the equations governing fluid motion in the microfluidic

device. Section 2.2.1 provides the full coupled Navier-Stokes and Gauss equations

governing fluid flow. Section 2.2.2 provides a simplification of the governing equa-

tions through the use of dimensional analysis techniques. In section 2.2.3, the fluid

flow solution is expressed as a superposition of electroosmotic and pressure-driven

flow components. Section 2.2.4 provides the solution to the electroosmotic flow com-

ponent. Section 2.2.5 provides a solution to the pressure-driven flow component.
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2.2.1 Full coupled Navier-Stokes and Gauss equations

We start by considering the Knudsen number (Kn) of the device, which pro-

vides a measure of accuracy of the continuum hypothesis for a fluid system [23]. For

our case, the Knudsen number is

Kn =
λwater

h
=
3× 10−10 m

10× 10−6 m
= 3× 10−5, (2.3)

where λwater is the mean free path of water molecules at standard temperature and

pressure; and h is the channel height of the device. Since the Knudsen number is

less than 10−2, the flow is within the continuum regime [23].

Since the flow is a continuum, the Navier-Stokes equations are applicable.

Because we are modeling the flow of water, incompressibility and Newtonian fluid

assumptions may be used [24]. Hence, the equations governing fluid motion are

given by

∇ ·
−→
V = 0 (2.4)

and

ρ

(
∂
−→
V

∂t
+
−→
V · ∇

−→
V

)

= −∇p+ µ∇2−→V , (2.5)

where
−→
V = (u, v, w) is the three dimensional fluid velocity, p is the pressure, µ is

the dynamic viscosity, ρ is the fluid density, ∂t denotes the partial derivative with

respect to time, ∇ is the gradient operator, and ∇ · () is the divergence operator.

Since the electrical double layer thickness (10 nm) is very small compared to

the channel dimensions, we can state the wall boundary conditions in terms of the
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velocity slip condition (Helmoltz-Smoluchowski equation) [16], [25], [26] as

−→
V wall = −

ǫζ

µ

−→
E . (2.6)

where
−→
V wall represents the fluid velocity at the wall,

−→
E = (Ex, Ey, Ez) is the electric

field, ǫ is the permittivity of the fluid, and ζ is the zeta potential at the wall. The

pressure boundary condition at the inlets is given by the equation

p(∂Di) = Pi, (2.7)

where ∂Di denotes the surface corresponding to ith inlet, and Pi denotes the pressure

at the ith inlet.

The equations governing electric fields are given by Gauss’s law [26]:

−ǫ∇2φ = 0 (2.8)

and

−→
E = −∇φ, (2.9)

where φ is the electric potential. The corresponding boundary conditions - insulation

at the walls and voltage potential at the inlets are given by

−→n ·
−→
E wall = 0 (2.10)

and

φ(∂Di) = γi, (2.11)

where −→n denotes the normal vector to the surface,
−→
E wall is the electric field at the

wall, and γi is the electric potential at the ith inlet.
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2.2.2 Simplification of Fluid Flow Equations at the Microscale

At the microscale, and at our operating conditions, these equations reduce to a

set of simple linear PDEs [16]. In order to obtain these simplified equations, we first

normalize equations (2.5) and (2.4) using the non-dimensionalization of variables

shown below:

−→r ∗ =
−→r

d
, (2.12)

t∗ =
t

tc
, (2.13)

−→
V ∗ =

−→
V

Vc
, (2.14)

and

p∗ =
p

(µVc/h)
, (2.15)

where −→r is the position vector, d ≈ 20 × 10−6 m is the hydraulic diameter for the

channel (for non-circular channels, hydraulic diameter is given by four times the

cross sectional area divided by the cross-sectional perimeter). We chose the cross

section to have rectangular width of 100×10−6 m and depth of 25×10−6 m) , tc = 1 s

is the characteristic time scale (e.g., for an applied forcing function), Vc = 10×10−6

ms−1 is the characteristic electroosmotic velocity magnitude, µ = 10−3 Nsm−2 is

the dynamic viscosity, Ec = 5000 Vm−1 is the characteristic electric field strength

(this value was chosen as a potential difference of 20V is applied across 4 mm), and

ǫ = 80.2× 8.854× 10−12 CN−1m−2 permittivity of the fluid. We then compare the

order of magnitude of each term in the equation, and finally discard the terms of

extremely small magnitude.
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Substituting equations (2.12)-(2.15) in (2.5) and (2.4), the normalized equa-

tions of fluid flow are given by

∇ ·
−→
V ∗ = 0 (2.16)

and

StRe
∂
−→
V ∗

∂t∗
+Re

−→
V ∗ · ∇

−→
V ∗ = −∇∗p∗ +∇∗2−→V ∗, (2.17)

where the ∇ and ∇2 operators are non-dimensionalized using d. St and Re are the

Strouhal and Reynolds numbers respectively, and are defined as

St =
d

tcVc
(2.18)

and

Re =
ρVch

µ
. (2.19)

The Strouhal number is a measure of the unsteadiness of the flow and the Reynolds

number gives the ratio of inertial and viscous forces in the fluid flow. In our case,

St = 2 (2.20)

and

Re = 2× 10−4. (2.21)

Hence, we see that, the terms on the left-hand side are extremely small in magnitude

and can be ignored. The normalized equations of fluid motion then become

∇ ·
−→
V ∗ = 0 (2.22)

and
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0 = −∇∗p∗ +∇∗2−→V ∗. (2.23)

Using (2.12)-(2.15), and transforming (2.22) and (2.23) back to the dimensional

form, the equations governing fluid motion are given by

∇ ·
−→
V = 0 (2.24)

and

−∇p+ µ∇2−→V = 0. (2.25)

The boundary conditions are given by equations (2.6) and (2.7).

2.2.3 Solution of Equation as a Superposition of Electroosmotic and

Pressure Flows

Due to the linear nature of equations (2.24) and (2.25), their solution can

be expressed as a linear superposition of the electroosmotic and pressure driven

components [17]:

−→
V =

−→
V EO +

−→
V p. (2.26)

The rationale behind the decomposition of the velocity field is as follows: If
−→
V EO

satisfies

∇ ·
−→
V EO = 0 (2.27)

and

µ∇2−→V EO = 0 (2.28)
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with boundary conditions

−→
V EOwall = −

ǫζ

µ

−→
E , (2.29)

(these correspond the equations of fluid flow due to electroosmosis in the absence

of externally applied or internally generated pressure gradients, which are obtained

by setting ∇p = 0 in (2.24) and (2.25)), and
−→
V p satisfies

∇ ·
−→
V p = 0 (2.30)

and

−∇p+ µ∇2−→V p = 0 (2.31)

with boundary conditions

−→
V Pwall = 0 (2.32)

and

p(∂Di) = Pi (2.33)

(these correspond to equations of fluid motion due to pressure driven flow in the

absence of an electrical double layer), then, adding (2.27) and (2.30); (2.28) and

(2.31); and boundary conditions (2.29), (2.32) and (2.33); and substituting
−→
V =

−→
V EO +

−→
V p, we get that

−→
V satisfies

∇ ·
−→
V = 0 (2.34)

and

−∇p+ µ∇2−→V = 0 (2.35)

with boundary conditions

−→
V wall = 0 (2.36)
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and

p(∂Di) = Pi. (2.37)

2.2.4 Solution for Electroosmotic Flow

Equations governing electroosmotic flow are given by (2.27) and (2.28) with

boundary conditions (2.43). We hypothesize that a solution of the equation is of

the form [16]

−→
V EO = c0

−→
E , (2.38)

where c0 is an undetermined constant, and
−→
E is the electric field. The rationale

behind this hypothesis is the following: The electric field satisfies both, the Faraday

and Gauss’ laws, which are given by

∇ ·
−→
E = 0 (2.39)

and

∇×
−→
E = 0. (2.40)

From equation (2.39), we have,
−→
V EO = c0

−→
E directly satisfies equation (2.27). To

prove that
−→
V EO = c0

−→
E satisfies equation (2.28), we use a well known vector identity

∇2−→V EO = ∇(∇ ·
−→
V EO)−∇×∇×

−→
V EO. (2.41)

From equations (2.41), (2.39), and (2.40), we have that
−→
V EO = c0

−→
E satisfies (2.28).

We choose

c0 = −
ǫζ

µ
(2.42)
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to ensure that the hypothesized solution
−→
V EO = c0

−→
E satisfies the boundary condi-

tion (2.29) as well. The fluid flow velocity due to electroosmosis, in the bulk flow

region bounded by the slip surfaces, is therefore given by

−→
V EO = −

ǫζ

µ

−→
E . (2.43)

Since the solution of the Laplace equation with fixed boundary conditions is unique

[27], and PDE (2.28) is a Laplace equation, we can be sure that (2.43) is the only

solution for the electroosmotic flow in the bulk flow region.

Note that the electroosmotic flow is directly proportional to the electric field

and responds instantly to it (because the Reynolds number is so small). Also, it

has a plug flow profile in the dimension perpendicular to the flow. Fig. 2.3 provides

an example of an electroosmotic flow solution. The electric field
−→
E is computed by

first solving the Gauss equations (2.8) and (2.9) with boundary conditions (2.11)

and (2.10). We solved these equations using COMSOL, a commercially available

numerical PDE solver.

2.2.5 Solution for Pressure-Driven Flow

Equations governing pressure driven flow (also known as Stokes flow) are given

by (2.30) and (2.31) with boundary conditions (2.32) and (2.7). We solved these

equations using COMSOL, a commercially available numerical PDE solver. Fig. 2.3

provides an example of a pressure driven flow solution.
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Figure 2.3: Sample solutions for electroosmotic and pressure-driven flows respec-

tively. The electroosmotic flow is directly proportional to the electric field and has a

plug flow profile in the cross sectional view. The pressure-driven flow has a parabolic

profile in the cross sectional view.
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2.3 Equations Governing Particle Motion

In this section, we shall obtain equations governing motion of microparticles

in the microfluidic device. Their motion is a vector sum of four components: motion

due to electroosmotic flow, pressure-driven flow, electrophoretic forces, and Brown-

ian motion. Section 2.2.3 provides a mathematical expression for the components

of particle motion due to electroosmosis and pressure-driven flow. Section 2.3.2 and

2.3.3 provide a mathematical expression for the components of particle motion due

to electrophoresis and Brownian motion. Section 2.3.4 provides the equation gov-

erning net particle motion. Finally, in Section 2.3.5 we express the particle velocities

in terms of input voltage vectors.

2.3.1 Particle Motion due to Electroosmotic and Pressure flows

As seen in previous sections, the net fluid flow in the device is given by the

superposition of electroosmotic and pressure flows. If the particles are neutral,

we can assume that they flow perfectly along with the fluid at all times. This

assumption can be justified as follows: Consider a spherical particle of radius ap in

the fluid. When the fluid flows at velocity V0 relative to the particle, the particle

experiences a drag force Fd, which can be calculated by the classical Stokes drag

law [26]:

Fd = 6πµapV0. (2.44)
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The motion of the particle as it accelerates due to Fd can be modeled by Newton’s

second law:

m
dv

dt
= 6πµap(V0 − v), (2.45)

where m is the mass of the particle, v is the velocity of the particle at any given

instant, and V0−v is the relative velocity of the fluid with respect to the particle. The

time tSt, required for the particle to accelerate to velocity 0.999V0, can be determined

by rearranging equation (2.45) and integrating both the variable t between limits 0

to tSt and the variable v between limits 0 to 0.999V0:

0.999V0∫

0

dv

V0 − v
=
6πµap
m

tSt∫

0

dt (2.46)

solving which, we get

tSt =
m

6πµap
ln

(
1

0.001

)
. (2.47)

For a particle of radius ap = 1 × 10−6 m (reflecting the size of polystyrene beads

used in our experiments) and assuming its density to be approximately equal to

that of water, ρ ≈ 103 kg m−3, we have tSt ≈ 10
−6 s. Since the characteristic time

scale in our experiments is seconds, for all practical purposes we can assume that

the particles move along with the fluid.

Hence the component of the microparticle motion due to electroosmosis
·
−→r EOcan

be expressed as

·
−→r EO = −

ǫζ

µ

−→
E (−→r ) (2.48)

and the component of the motion due to pressure driven flow
·
−→r pcan be ex-

pressed as

·
−→r p =

−→
V p(

−→r ) (2.49)
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where −→r is the position vector of the particle.

2.3.2 Particle Motion due to Electrophoresis

If the particles are charged, (polystyrene beads may acquire a surface charge

in water [26], [22]) they experience an electrophoretic drift velocity with respect to

the fluid on application of an electric field. This drift velocity is given by

·
−→r Ep = c

−→
E (−→r ), (2.50)

where c is the particle’s electrophoretic mobility.

2.3.3 Particle Motion due to Brownian Motion

In addition to the previously discussed contributions to motion, the particles

also exhibit a random walk or Brownian motion due to collisions with fluid molecules.

The particle velocity is modeled as [26], [28],

·
−→r B =

√
kT

3πµapdt
−→ω (0, 1), (2.51)

where −→ω (0, 1) is a 2 by 1 vector whose elements are Gaussian random variables with

zero mean and a variance of one, and dt is the time interval over which the particle

displacement is measured. Note that the average particle displacement in time dt

given by

δB =

√
kTdt

3πµap
≈ 150 nm (2.52)

is a very small number compared to particle diameter (2.5 microns). For calculation

purposes, here we chose dt = 0.05 s because the control voltages are updated 20

times every second in experiments.
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2.3.4 Equations for Net Particle Motion

From equations (2.48), (2.49), (2.50), and (2.51) the net particle velocity is

given by

·
−→r = −

ǫζ

µ

−→
E (−→r ) + c

−→
E (−→r ) +

−→
V p(

−→r ) +

√
kT

3πµapdt
−→ω (0, 1). (2.53)

The particle motion due to electroosmosis and electrophoresis is in the direction

of the electric field and can be combined together. The particle motion due to

pressure flow and Brownian motion cannot be controlled and hence we consider

them as uncertainty terms. The net particle velocity equation is therefore given by

·
−→r =

(
−
ǫζ

µ
+ c

)
−→
E (−→r ) + δ (2.54)

where δ denotes the uncertainty due to Brownian motion and pressure flow.

2.3.5 Governing Equations for a System of Particles in Terms of In-

put Voltages

In order to obtain the equations governing motion for a system of particles,

in terms of input voltage, consider a microfluidic device with n inlets, with voltages

γ1, γ2, .., γn applied to the n electrodes, and say we wish to obtain governing equa-

tions for a system of m particles at position vectors −→r 1,
−→r 2, ..,

−→r m. From equation

(2.54) the equations governing nominal particle motion for the m particles are given
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by 



·
−→r 1 =

(
− ǫζ

µ
+ c
)−→
E (−→r 1)

·
−→r 2 =

(
− ǫζ

µ
+ c
)−→
E (−→r 2)

:

·
−→r m =

(
− ǫζ

µ
+ c
)−→
E (−→r m)





. (2.55)

Since electric fields are superposable,
−→
E can be expressed as a linear combination of

n modes, where the ith mode is defined as the electric field generated when the ith

electrode is set to 1V and the rest are set to 0V i.e. γi = 1V and γj = 0 (∀j �= i).

This is expressed as

−→
E (−→r ) =

[
−→
E 1(

−→r )
−→
E 2(

−→r ) ..
−→
E n(

−→r )

]






γ1

γ2

:

γn






. (2.56)

Now, since voltage vectors

[

γ1 γ2 .. γn

]T
and

[

γ1 + α γ2 + α .. γn + α

]T

would produce the exact same electric field, it is always possible to adjust the

voltages such that γn = 0, or we say that γn is set to ground. Hence, any possible

electric field is can be expressed as a linear combination of only n− 1 modes. This

is expressed by

−→
E (−→r ) =

[
−→
E 1(

−→r )
−→
E 2(

−→r ) ..
−→
E n−1(

−→r )

]






γ1

γ2

:

γn−1






. (2.57)
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Substituting equation (2.57) in (2.55) we have the equations governing motion of a

system of particles:





·
−→r 1

·
−→r 2

:

·
−→r m






=

(
−
ǫζ

µ
+ c

)






−→
E 1(

−→r 1)
−→
E 2(

−→r 1) ..
−→
E n−1(

−→r 1)

−→
E 1(

−→r 2)
−→
E 2(

−→r 2) ..
−→
E n−1(

−→r 2)

: : : :

−→
E 1(

−→r m)
−→
E 2(

−→r m) ..
−→
E n−1(

−→r m)











γ1

γ2

:

γn−1






, (2.58)

which can be expressed more concisely as

·
−→r = A(−→r )−→γ , (2.59)

where

−→r =






−→r 1

−→r 2

:

−→r m






, (2.60)

A(−→r ) =

(
−
ǫζ

µ
+ c

)






−→
E 1(

−→r 1)
−→
E 2(

−→r 1) ..
−→
E n−1(

−→r 1)

−→
E 1(

−→r 2)
−→
E 2(

−→r 2) ..
−→
E n−1(

−→r 2)

: : : :

−→
E 1(

−→r m)
−→
E 2(

−→r m) ..
−→
E n−1(

−→r m)






, (2.61)

and

−→γ =






γ1

γ2

:

γn−1






. (2.62)
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Chapter 3

Controller Design

In this chapter, we look at the design of control logic to steer particles along

desired trajectories. Section 3.1 provides the derivation of the feedback control law

for the nominal system. Section 3.2 analyzes degradation of tracking performance

of the controller in the presence of system uncertainties. Section 3.3 presents some

simulation results and section 3.4 provides explanations for addressing important

questions about loss of control in certain situations.

3.1 Designing a Controller for the Nominal System

Fig. 3.1 shows the basic components for multiple particle control: the mi-

crofluidic device, a camera, and a computer with a control algorithm are connected

in a feedback loop. The camera registers the position of the particles in real time,

the computer compares the current position of the particles with the desired particle

position, and the control algorithm then computes the necessary actuator voltages

that will create the fluid flow to carry the particles to their desired position. These

voltages are immediately applied at the electrodes in the microfluidic device. This

process is repeated 20 times every second. The following theorem gives the feedback

control law for the nominal system.
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computer microfluidic 
device

camera

picture framesvoltage

desired particle 
position

actual particle 
position

Figure 3.1: Block diagram for the feedback control of multiple particles in the

microfluidic device.

Theorem 1 Consider a set of particles, whose motion is described by the system

·
−→r = A(−→r )−→γ , (3.1)

with given initial condition

−→r (0) = −→r 0, (3.2)

where −→r =

[
−→r 1

−→r 2 .. −→r m

]T
∈ D1 is the vector of particle positions, D1 ⊂ R

2m

is a domain covering the control area of the device, −→γ ∈ Rn−1is the control voltage

vector, A : D1 → R
2m×(n−1) is a smooth function on domain D1, m is the number

of particles and n is the number of electrodes. The desired particle trajectory is −→r d

where −→r d ∈ D1. Then, the feedback control law

−→γ = A‡(−→r )(
·
−→r d − k−→e ), (3.3)

where A‡(−→r ) is the pseudo-inverse of matrix A(−→r ) and follows the relation [29]

A‡(−→r ) = AT (−→r )(A(−→r )AT (−→r ))−1, (3.4)

−→e = −→r − −→r d is the tracking error, and k is the controller gain, ensures that the

tracking error −→e exponentially decays to zero with time.
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Proof. Applying the feedback law (3.3) to the system (3.1) the closed loop

dynamics are described as

·
−→r = A(−→r )A‡(−→r )(

·
−→r d − k−→e ), (3.5)

Substituting equation (3.4) in equation (3.5) we have

·
−→r = A(−→r )AT (−→r )(A(−→r )AT (−→r ))−1(

·
−→r d − k−→e ), (3.6)

=⇒
·
−→r = A(−→r )AT (−→r )(AT (−→r ))−1(A(−→r ))−1(

·
−→r d − k−→e ), (3.7)

=⇒
·
−→r =

·
−→r d − k−→e , (3.8)

which simplifies to

·
−→e = −k−→e . (3.9)

Hence the feedback control law (3.3) ensures that the tracking error exponen-

tially decays to zero with time.

Note: The pseudo-inverse of a fat matrix A is defined by [29]

A‡ = AT (AAT )−1, (3.10)

inverts the non-invertible matrix A as best as possible and has the following prop-

erties:

• The least norm solution of the linear system y = Ax is given by x = A‡y.

• AA‡ = I.

The feedback control law

−→γ = A‡(−→r )(
·
−→r d − k−→e ), (3.11)
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Figure 3.2: The desired and actual particle positions are denoted by the black hollow

and solid circles, respectively. The various vectors denoting desired particle velocity

and error are as indicated. The controller creates a particle velocity of
·
−→r d − k−→e ,

which, as we can see, pushes the particle towards the desired trajectory.

can be interpreted as producing −→γ , the most efficient solution (least norm solution)

from a set of all possible voltages that will move particles at position−→r with velocity

(
·
−→r d − k−→e ). As seen from the Fig. 3.2, this makes intuitive sense, as this pushes

the particles towards the desired trajectory.

3.2 Degradation in Controller Performance due to System Uncertain-

ties

The previous section provided a feedback control law for the nominal system.

In reality, however, there are several sources that introduce uncertainty in particle

velocities and affect tracking performance. Electrophoresis, Brownian motion, and

pressure driven flow (as pointed out in the final section of chapter 2) all contribute
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to uncertainty in particle motion. In addition, distortions in device geometry due

to fabrication tolerances and uncertainties in zeta potential value also contribute to

distortion of the nominal flow field. In our model, we assume that the polystyrene

beads move along with the flow, but in experiments, we often observed that the

particles encounter friction with the top and the bottom channel surfaces. The

following theorem provides a numerical bounds and convergence rate for the tracking

error in the presence of such uncertainties.

Theorem 2 Consider the system described by

·
−→r = [A(−→r ) + δ1(

−→r , t)]−→γ (t) + δ2(
−→r , t) (3.12)

with given initial condition

−→r (0) = −→r 0, (3.13)

where −→r ∈ D1 is the vector of particle positions,D1 ⊂ R
2m is a domain such

that −→r i ∈ Ddevice (Ddevice is the domain covering the control area of the device),

−→γ ∈ R
n−1 is the control voltage vector, A : D1 → R

2m×(n−1) is a smooth

function on domain D1, m is the number of particles, n is the number of

electrodes, δ1is the deviation of the real map from the nominal map A due to

distortions in device geometry and uncertainties in zeta potential value,
−→
δ2 is

the vector of parasitic pressure, electrophoretic, Brownian motion, and friction

velocities that are superposed on top of the electroosmotic particle velocities.

(a) Then the feedback control law

−→γ = A‡(−→r )(
·
−→r d − k−→e ) (3.14)
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ensures that the norm of the tracking error ‖−→e ‖2 is ultimately bound by

∆m/λKmin where

−→
δ (t,−→r ,−→γ ) = δ1(

−→r , t)A‡(−→r )
·
−→r d + δ2(

−→r , t), (3.15)

K = k(1 + δ1(
−→r , t)A‡(−→r )), (3.16)

∥∥∥−→δ (t,−→r ,−→γ )
∥∥∥
2
< ∆m (3.17)

and K is positive definite with its smallest eigenvalue given by λKmin.

(b) Further the convergence of ‖−→e ‖2 is bounded by an exponentially decaying func-

tion such that

‖−→e (t)‖2 < (‖
−→e (0)‖2 −

∆m
λKmin

) exp(−kt) +
∆m

λKmin

(3.18)

∀t ≥ 0.

Proof.

(a) Consider the system

·
−→r = [A(−→r ) + δ1(

−→r , t)]−→γ (t) +
−→
δ 2(

−→r , t), (3.19)

applying the feedback control law (3.14) the closed loop dynamics are given by

·
−→r = A(−→r )(A‡(−→r )(

·
−→r d − k−→e ) +

−→
δ (t,−→r ,−→γ ), (3.20)

which simplifies to

·
−→e = −K−→e +

−→
δ (t,−→r ,−→γ ). (3.21)

Considering the Lyapunov function candidate

V =
1

2
−→e T−→e (3.22)
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for the system (3.21) and taking its time derivative we have

·

V = −→e T
·
−→e . (3.23)

Substituting equation (3.21) in equation (3.23) we have

·

V = −→e T (−K−→e +
−→
δ (t,−→r ,−→γ )), (3.24)

=⇒
·

V = −−→e TK−→e +−→e T−→δ (t,−→r ,−→γ ), (3.25)

=⇒
·

V ≤ −λKmin ‖
−→e ‖

2
2 + ‖

−→e ‖2

∥∥∥−→δ (t,−→r ,−→γ )
∥∥∥
2
, (3.26)

=⇒
·

V < −λKmin ‖
−→e ‖

2
2 + ‖

−→e ‖2∆m, (3.27)

=⇒
·

V < 0 ∀ ‖−→e ‖2 >
∆m

λKmin

. (3.28)

Hence ‖−→e ‖2 is ultimately bound by ∆m/λKmin.

(b) To obtain an estimate on the convergence of ‖−→e ‖2 , we first consider the rate of

decay of the Lyapunov function

·

V =
d

dt
(
1

2
−→e T−→e ) (3.29)

=⇒
·

V =
d

dt
(
1

2
‖−→e ‖

2
2) (3.30)

=⇒
·

V = ‖−→e ‖2

·

‖−→e ‖2 (3.31)

Comparing equations (3.27) and (3.31) we have

‖−→e ‖2

·

‖−→e ‖2 < −λKmin ‖
−→e ‖

2

2 + ‖
−→e ‖2∆m (3.32)

=⇒
·

‖−→e ‖2 < −λKmin ‖
−→e ‖2 +∆m. (3.33)

The solution of which yields [30]

‖−→e (t)‖2 < (‖
−→e (0)‖2 −

∆m
λKmin

) exp(−λKmint) +
∆m

λKmin

. (3.34)
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Figure 3.3: The particle tracking error norm (blue curve) in the presence of sys-

tem uncertainties is bounded between the exponentially decaying curve (marked in

black). The ultimate bound is given by ∆m/λKmin.

Fig. (3.3) illustrates that the error norm is bound by the exponentially decay-

ing function given by equation (3.34).

3.3 Simulation Results

This section presents COMSOL/MATLAB simulation results for the control

of one, two, and three particles. To simulate experimental conditions we considered:

• A twelve channel device geometry, similar to that used in experiments. Incom-

ing radial channels were 25 microns wide, 10 microns deep, and the central

control area was about 125 microns in diameter
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• A mild parasitic pressure driven flow with a magnitude of around 10 microns/s

at particle positions

• A 10% uncertainty in the estimation of zeta potential

• Minor distortions in the device geometry of ±5 microns at arbitrary locations

• Brownian noise with an average particle displacement of 0.15 microns per

control voltage update time step

• Control voltage was updated 20 times a second

3.4 Explaining Two Important Observations

We could only apply voltages in the range +10V to −10V to the electrodes.

Higher voltages led to electrochemical reactions at the electrodes, disturbing the

control and complicating the physics of the problem. Overall, we encountered two

effects that put serious limits on the steering capability of the device.

1. As particles came close to each other, the voltages computed by the controller

rose sharply, saturating the actuators, making control impossible.

2. As the number of particles to be steered was increased, the maximum speed

at which the particles could be steered dropped drastically. The drop was

so dramatic, that when attempting to steer more than three particles, the

electroosmotic flow was insufficient to overcome even the mildest parasitic

pressure-driven flows that existed in the device at all times - leading to loss of

control.
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t = 0s

t = 2s

t = 4s

t = 6s

t = 8s

t = 10s

25 µm

Figure 3.4: This figure shows a single particle steering simulation results for a twelve

channel microfluidic device. The thick green lines indicate the desired particle tra-

jectory. The thin black lines indicate the actual particle trajectory. A mild parasitic

pressure flow, distortions in device geometry, uncertainty in estimation on zeta po-

tential values, and Brownian motion are considered in the simulation.
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t = 0s

t = 5s

t = 10s

t = 15s

t = 20s

t = 25s

25 µm

Figure 3.5: This figure shows a two-particle steering simulation results for a twelve

channel microfluidic device. The thick green lines indicate the desired particle tra-

jectory. The thin black lines indicate the actual particle trajectory. A mild parasitic

pressure flow, distortions in device geometry, uncertainty in estimation on zeta po-

tential values, and Brownian motion are considered in the simulation.
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t = 0s

t = 6s

t = 12s

t = 18s

t = 24s

t = 30s

25 µm

Figure 3.6: This figure shows a three-particle steering simulation results for a twelve

channel microfluidic device. The thick green lines indicate the desired particle tra-

jectory. The thin black lines indicate the actual particle trajectory. A mild parasitic

pressure flow, distortions in device geometry, uncertainty in estimation on zeta po-

tential values, and Brownian motion are considered in the simulation.
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As a result, initially we could only demonstrate steering of up to three parti-

cles. Additionally, we had to ensure that no two particles came very close to each

other at any time during the particle steering process. Manually designing such

paths was extremely tedious. In order to achieve our objective of demonstrating

steering of up to 5 particles, it was necessary to first understand the reasons for

this system behavior and then identify ways of avoiding or changing this behavior.

In this section, we explain the cause. In chapters 4 and 5 we elaborate on ways of

avoiding/changing this behavior.

In the first subsection, we will express the voltage vector in terms of the

singular values of the A matrix. In the second and third subsection, we will use

this expression and an understanding of the change in the singular values of A in

response to changes in particle configurations and to changes in particle numbers to

explain the two observations mentioned earlier.

3.4.1 Expressing the Controller Voltage in Terms of the Singular Val-

ues of Matrix A

Consider a set of particles at positions −→r g and say we wish to actuate the

particles with velocities
·
−→r D. The equations governing particle motion are then given

by the linear equation

·
−→r D = A(−→r g)

−→γ . (3.35)

This equation is now expressed in terms of its standard basis. Without loss of

generality, it can also be expressed in terms of its singular value basis. The singular
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value basis is obtained by considering the SVD decomposition of the matrix Ag =

A(−→r g) as shown.

Ag = QΣW T =

[
−→q 1

−→q 2 .. −→q n−1

]






σ1 0 0 0

0 σ2 0 0

0 0
. . . 0

0 0 0 σn−1











−→w T
1

:

:

−→w T
n−1






. (3.36)

The input and output basis vectors for the standard and singular value basis is

shown in the table below.
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Standard basis Singular Value basis

Normalized

input vectors

(voltage)






1

0

:

0






,






0

1

:

0






, ...,






0

0

:

1






−→w 1,
−→w 2, ...,

−→w n−1

Normalized

output vectors

(particle vector)

1
‖Ag1‖

Ag1,
1

‖Ag2‖
Ag2, ..

(n− 1 vectors)

Ag(i) is ith column of Ag

−→q 1,
−→q 2, ...,

−→q n−1

Relation between

input & output

vectors

Ag





0

:

1

:

0





= Ag(i)

Here the input vector has a 1

at the ith position

Ag
−→w i = σi

−→q i

(see Appendix A)

When expressed in terms of the standard basis, we can physically interpret

the equation (3.35) as: The desired particle velocities can be obtained by linearly

combining n−1 fluid modes, as shown in the upper half of Fig. 3.7. When expressed

in terms of the singular value basis, the equation (3.35) can be physically interpreted

as: The desired particle velocities can be obtained by linearly combining n−1 singular

value fluid modes, as shown in the upper half of Fig. 3.7. The ith singular value
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fluid mode is obtained by applying the voltage vector −→w i to the electrodes.

The controller voltage

−→γ = ATg (AgA
T
g )
−1

·
−→r D (3.37)

which also corresponds to the least norm solution to equation (3.35), is obtained by

linearly combining only the first 2m singular value fluid modes ( Refer to subsection

(3.4.4) for a rigorous mathematical proof.). Let c1, c2, ..., c2m be the components of

the voltage vector −→γ along the singular value input basis. Therefore,

−→γ = c1
−→w 1 + c2

−→w 2 + ...+ c2m
−→w 2m. (3.38)

Let a1, a2, ..., a2m be the components of the particle velocity vector
·
−→r D along the

singular value output basis. Therefore,

·
−→r D = a1q1 + a2q2 + ...+ a2mq2m. (3.39)

Substituting (3.38) and (3.39) in (3.35) and using the identity Ag
−→w i = σi

−→q i, we

get

∑
aiqi =

∑
ciσiqi. (3.40)

Comparing coefficients of qi we have

ci =
ai
σi

. (3.41)

Substituting (3.41) in (3.38) we get

−→γ =
a1
σ1

−→w 1 +
a2
σ2

−→w 2 + ...+
a2m
σ2m

−→w 2m. (3.42)

In general we expect ai to be of the same order of magnitude O(a), hence

−→γ ≈
O(a)

σ1

(
−→w 1 +

σ1
σ2
−→w 2 + ...+

σ1
σ2m

−→w 2m

)
. (3.43)
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Figure 3.7: Desired particle velocities can be obtained by linearly combining n− 1

fluid modes, as shown in the upper half of the figure. Without loss of generality, the

particle velocities can also be obtained by linearly combining the n−1 singular value

modes, as shown in the lower half of the figure. The least norm voltage solution to

obtain the desired particle velocities is acquired by linearly combining only the first

2m singular value modes.
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In the following subsections we will use this expression to explain the two observa-

tions mentioned earlier.

3.4.2 Explaining Sharp Rise in Control Voltage when Particles Ap-

proach Each Other

Two scenarios are shown in Fig. 3.8: one is for two particles that are further

away from each other and the other is for particles closer to each other. The Ag

matrix corresponding to each scenario is shown on the right. The reader will recall

that the rows of the A matrix are such that the first and third rows represent the x

velocity component of the first and second particle respectively for all fluid modes

i = 1, 2, ..n. The second and fourth rows represent the y velocity component of

the first and second particles respectively for fluid modes i = 1, 2, ..n. For the first

scenario the four rows in general would represent four linearly independent vectors.

As the particles come closer to each other as shown in the second scenario, the first

row becomes similar to the third row and the second row becomes similar to the

fourth row. Consequently, the Ag matrix tends towards having only two linearly

independent rows. In terms of singular values, this means that as the two particles

come closer to each other, the last two singular values progressively tend to zero.

Therefore σ1/σ3 →∞ and σ1/σ4 →∞, consequently the voltage expression

−→γ ≈
O(a)

σ1

(
−→w 1 +

σ1
σ2
−→w 2 +

σ1
σ3

−→w 3 +
σ1
σ4

−→w 4

)
→∞, (3.44)

saturating the actuators and leading to loss of control capability. This reflects a

fundamental property of the system: two particles close together see a similar fluid

46



flow and steering them apart is difficult.

3.4.3 Explaining the Rapid Decrease in Maximum Particle Steering

Speed as the Number of Particles Increases

Fig. 3.9 shows, for a typical case, the maximum particle steering speed and

singular values of the Ag matrix as the number of particles increase. We see that

the smallest singular value drops rapidly with increase in the number of particles.

Consequently, the terms σ1/σi towards the extreme right in the voltage expression

−→γ ≈
O(a)

σ1

(
−→w 1 +

σ1
σ2
−→w 2 + ...+

σ1
σ2m−1

−→w 2m−1 +
σ1
σ2m

−→w 2m

)
(3.45)

rapidly rise in magnitude. Conversely, given a limit of ±10V on each electrode the

maximum particle steering speed falls rapidly as the number of particles increases.

As shown in Fig. 3.9, the maximum electroosmotic particle actuation speed for four

and five particles is much lower than the mild parasitic pressure flow that always

exists in the device, and hence we were unable to steer more than three particles.

3.4.4 Rigorous Mathematical Treatment for the Physical Interpreta-

tion of Controller

In subsection (3.4.1) we had used the fact that the least norm solution to the

system equation

·
−→r D = Ag

−→γ (3.46)
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Figure 3.8: Scenario 1 represents a situation when the two particles being steered are

far away from each other, and scenario 2 represents a situation when the particles

are closer to each other. The Ag matrix and its singular values corresponding to

each scenario are shown on the right. For scenario 1 the four rows in general would

represent four linearly independent vectors. This is illustrated by each of the four

rows highlighted by different colors. As the particles come closer to each other, as

shown in scenario 2, the first row becomes similar to the third row and the second

row becomes similar to the fourth row. This is illustrated by the first and third

rows highlighted by the same color and the second and fourth rows highlighted by

the same color. Consequently, the Ag matrix leans towards having only two linearly

independent rows. In terms of singular values, this means that as the two particles

come closer to each other, the last two singular values progressively tend to zero.

48



21 um/s

12 um/s

3 um/s

2 um/s

10 um/sparasitic
pressure flow

23 um/s 1.3 1.3

1.6 1.5
0.9 0.8

1.91.8
1.11.00.70.6

2.1 2.0
1.1 1.0 0.7 0.6

0.2 0.2

2.4 2.2
1.3 1.2

0.8 0.7 0.4 0.3 0.1 0.1
singular value number
si

ng
u

la
r 

va
lu

e

singular value number

si
n

gu
la

r 
va

lu
e

singular value number

si
n

g
u

la
r 

va
lu

e

singular value number

si
n

g
u

la
r 

va
lu

e

singular value number

si
ng

u
la

r 
va

lu
e

singular value 
graph

x 10-6

x 10-6

x 10-6

x 10-6

x 10-6

maximum particle 
steering speed

Figure 3.9: This figure shows, for a typical case, the maximum particle steering

speed and singular values of the A matrix as the number of particles increase. For

greater than three particles, the maximum particle steering speed is much lower

than the mild parasitic pressure flow that always exists in the device; hence the

inability to steer more than three particles with the existing setup. The singular

values of the A matrix corresponding to each case are also given. The lower singular

value modes introduce progressively larger voltage components in the control voltage

solution. Conversely, with a maximum limit of ±10 V on the actuation voltages,

the maximum particle steering speed drops rapidly with an increase in the number

of particles.
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is obtained by combining only the first 2m singular value output basis vectors or

fluid modes, and that it is given by the expression

−→γ l = ATg (AgA
T
g )
−1

·
−→r D. (3.47)

This section, provides a mathematical proof [29].

Theorem 3 The nominal system equation (3.1) for a set of particles at a given

position −→r = −→r g and for desired particle velocities
·
−→r =

·
−→r D is given by the linear

system of simultaneous equations

·
−→r D = Ag

−→γ (3.48)

where Ag = A(−→r g) and Ag ∈ R
2m×(n−1). We only consider situations where 2m <

n − 1 i.e. the number of particle degrees of freedom is less than the number of

actuators. In this case, Ag is fat, i.e., there are more variables than equations,

−→γ is underspecified and consequently system (3.48) has infinitely many solutions.

Assume that Ag is full rank (rank(Ag)=2m ). Let −→γ be any of the infinitely many

solutions of system (3.48). Further, consider the singular value decomposition of

Ag

Ag = QΣW T =

[
−→q 1

−→q 2 .. −→q n−1

]






σ1 0 0 0

0 σ2 0 0

0 0
. . . 0

0 0 0 σn−1











−→w T
1

:

:

−→w T
n−1






(3.49)

where Q ∈ R2m×(n−1) , W ∈ R(n−1)×(n−1), Σ ∈ R(n−1)×(n−1) and the vectors

−→w i(i = 1, 2, .., n− 1) and
−→q i(i = 1, 2, .., n − 1) satisfy [29]

Ag
−→w i = σi

−→q i (3.50)
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‖−→w i‖ = ‖
−→q i‖ = 1. (3.51)

(a) The projection of −→γ in the subspace spanned by the first 2m input vectors −→w i

(i=1,2,..,2m) is also a solution of (3.48).

(b) All solutions of (3.48) have the same component along the first 2m input vectors

−→w i (i=1,2,..,2m).

(c) This component is the least norm solution of (3.48).

(d) The least norm solution of (3.48) is given by the formula −→γ l = AT
g (AgATg )

−1
·
−→r d.

Proof.

(a) From Appendix A [29], we see that the input vectors −→w i (i = 1, 2, .., n − 1) are

orthonormal, the first 2m input vectors −→w i (i = 1, 2, .., 2m) form the basis

of the row space of Ag and the that the last n − 1 − 2m input vectors −→w i

(i = 2m+ 1, .., n − 1) form the basis of the null space of Ag.

Resolving −→γ into components along the row space −→γ R and null space −→γ N we

get

−→γ = −→γ R +
−→γ N (3.52)

Since −→γ N is in the null space of Ag,

Ag(
−→γ N ) = 0 (3.53)

Substituting (3.52) into (3.48) and using (3.53)we get

·
−→r d = Ag

−→γ = Ag(
−→γ R +

−→γ N ) = Ag
−→γ R. (3.54)

51



Hence, the projection of −→γ in the subspace spanned by the first 2m input

vectors −→w i (i = 1, 2, .., 2m) is also a solution of (3.48).

(b) Let −→γ 1 and −→γ 2 be two solutions of (3.48) such that they have different compo-

nents in the row space of Ag. Let −→γ 1R and −→γ 2R denote their components in

the row space of Ag.Then from (a) we have that

Ag
−→γ 1R =

·
−→r D (3.55)

and

Ag
−→γ 2R =

·
−→r D. (3.56)

Subtracting (3.55) from (3.56) we get

Ag(
−→γ 2R −

−→γ 1R) = 0. (3.57)

Hence, −→γ 2R −
−→γ 1R belongs to the null space of Ag. This is a contradiction

since −→γ 1R, −→γ 2R and all their linear combinations will also be in the row space

of Ag. Hence all solutions of (3.48) have the same component in the row space

of Ag.

(c) Let −→γ Rp denote the row space component common in all solutions of (3.48).

Any solution of (3.48) is then necessarily of the form

−→γ = −→γ Rp +
−→
φ N , (3.58)

where
−→
φ N belongs to the null space of Ag. So given

‖−→γ ‖
2
= ‖−→γ Rp + φN‖

2
≥ ‖−→γ Rp‖

2
+ ‖φN‖

2 , (3.59)
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−→γ has the lowest norm when
−→
φ N = 0. Hence −→γ Rp is the lowest norm solution

of (3.48).

(d) From (c) we have that the lowest norm solution of (3.48) −→γ l only has compo-

nents in the row space of Ag. Hence

−→γ l =
2m∑

i=1

−→w ibi, (3.60)

for some scalar coefficients bi(i = 1, 2, .., 2m). Resolving −→r D along output

directions qi(i = 1, 2, .., 2m) we have that

·
−→r D =

2m∑

i=1

(−→q Ti
·
−→r D)

−→q i. (3.61)

Substituting (3.60) and (3.61) in system equation (3.48) we get

2m∑

i=1

(−→q T
i

·
−→r D)

−→q i = Ag

2m∑

i=1

−→w ibi. (3.62)

Using the identity Ag
−→w i = σi

−→q i from Appendix A we have that

2m∑

i=1

(−→q T
i

·
−→r D)

−→q i =
2m∑

i=1

σi
−→q ibi. (3.63)

Comparing coefficients of qi on both sides we have

biσi = (
−→q Ti

·
−→r D). (3.64)

Substituting (3.64) in (3.60) we get

−→γ l =
2m∑

i=1

−→w ibi =
2m∑

i=1

−→w i

1

σi

−→q Ti
·
−→r D. (3.65)
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Using the identity AT
g qi = σiwi from Appendix A we have

−→γ l =

2m∑

i=1

(ATg

−→q i

σi
)
1

σi
(−→q Ti

·
−→r D) =

2m∑

i=1

AT
g

1

σ2i

−→q i(
−→q T

i

·
−→r D). (3.66)

Using the identity

qi
σ2i
= (AAT )−1qi (3.67)

from Appendix A we have

−→γ l =
2m∑

i=1

AT
g (AgA

T
g )
−1−→q i(

−→q T
i

·
−→r D) = ATg (AgA

T
g )
−1

2m∑

i=1

−→q i(
−→q Ti

·
−→r D). (3.68)

Hence,

−→γ l = ATg (AgA
T
g )
−1

·
−→r D. (3.69)
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Chapter 4

Path Planning

When conducting simulations it was found that if all particles were further

away from each other they could be steered at much higher speeds. If in the course

of a simulation, any two particles came close to each other, the control voltage rose

sharply, and saturated the actuators. A rigorous mathematical explanation for this

observation is provided in chapter 3. In order to efficiently transport particles, it is

necessary that the particles do not come too close to each other during the entire

steering process. Manually designing such paths is not feasible, especially when

designing paths for three or more particles and hence there was a need to develop

an automated method for path planning. This chapter deals with the objective of

efficiently transporting particles between given initial and final positions. Section

4.1 outlines a method for rapidly generating high probability paths for efficiently

steering particles. Section 4.2 presents a method for picking the best path using

an algorithm called Dynamic Programming. Finally, section 4.3 presents simulation

results.

4.1 Generating High Probability Paths

In order to ensure that particles stay atleast a pre-set distance apart during

the steering process, it is necessary to impose certain restrictions on their movement.
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Subsection 4.1.1 outlines these restrictions. Subsection 4.1.2 then introduces a no-

tation for representing the paths and subsection 4.1.3 continues to present a method

for rapidly obtaining high probability paths for a single particle. Lastly, subsection

4.1.4 extends the method to obtaining high probability paths for multiple particles.

4.1.1 Constraints on Particle Motion for Generating High Probability

Paths

The following constraints imposed upon particle motion guarantee a minimum

distance of a/
√
2 units between each pair of particles at all times.

• At time t = 0, each particle is at one of the vertices of the grid shown in Fig.

4.1.

• The motion of all particles is constrained to follow along the grid.

• At any given point of time, all particles move with the same speed.

• The particles can move with variable speed as they traverse along the grid

segments.

• The particles do not collide.

This ensures that all particles leave and arrive at the grid vertices at the same

time.
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Figure 4.1: The numbers represent vertices of the grid. If at time t = 0s, each

particle is at one of the vertices of the grid, and for all time t > 0s, the motion of

the particles is constrained along the grid, all particles move with the same speed at

any given time, and the particles are on trajectories such that they do not collide,

then, the minimum distance between any two particles at all times is always greater

than or equal to a/
√
2.
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4.1.2 Notation for Representing Paths

Consider the path for a single particle traveling from vertex 2 to vertex 15

through vertices 6, 7 and 11. This path can be represented by a node diagram as

shown in Fig. 4.2. Here each node represents a vertex through which the particle

passes on its journey from the initial to the final vertex.

A multi-particle path is represented in a similar fashion as shown in Fig. 4.3.

4.1.3 Method for Rapidly Obtaining Paths for Single Particles

Let us say that we want to generate all possible paths for a single particle

traveling from vertex 2 to vertex 15. To do this, first assign string variables r, l, u, d, s

to denote right, left, up, down and stationary motions of the particle respectively. At

a minimum, the particle must move three steps to the right and one step downward.

Thus we associate a motion array shown in Fig. 4.4 with this path. We can see that

all possible unique permutations of the elements of the motion array would give us

all possible paths from vertex 2 to vertex 15 that involve moving three steps to the

right and one step downward as shown in Fig. 4.4.

It should be noted, that it is possible to extend the degree of freedom of

the path by adding equal and opposite moves or by adding an arbitrary number

of stationary elements to the motion array. For example, adding an additional

canceling up and down motion at arbitrary locations to the motion array will yield

a new motion array and corresponding new set of paths. The additional degrees of

freedom may be introduced based on the designer’s judgement. This is especially
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Notation of a single particle path

Figure 4.2: This figure gives the notation for representing the path of a single

particle. As an example, the path of a particle as it moves from vertex 2 to vertex

15 passing through vertices 6, 7 and 11 en route is represented by the node diagram

notation.
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2 14 6 10 7 6 11 2 15 3

Figure 4.3: This figure gives the notation for representing the paths for multiple

particles. As an example, the path of two particles is shown here. The first particle

travels from vertex 2 to vertex 15, passing through vertices 6, 7 and 11. The second

particle travels from vertex 14 to vertex 3, passing through vertices 10, 6 and 2. The

path is represented by the node diagram notation.
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Figure 4.4: This figure illustrates a method for obtaining all possible paths for a

single particle moving from vertex 2 to vertex 15. We assume that the particle is

constrained to only move 3 steps to the right and one step down. All possible unique

permutations of the motion array are shown on the left and the corresponding paths

are shown on the right. The path of the particle shown on the grid is denoted by

the third motion array that is shaded.
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useful for extending a short motion array for a particular particle when the motion

arrays of other particles are longer, or if the particle motion is congested and more

freedom is required for the particles to reach a path with optimal separation.

4.1.4 Method for Rapidly Obtaining Paths for Multiple Particles

Let Si denote the set of all possible paths for particle i. Then, Sall = S1 ×

S2 × .. × Sm represents the set of all possible path combinations that will take m

particles from given initial to final positions. Sall also contains paths such that two

or more particles collide during the steering process. We then have to cull a subset

Sfeasible ⊂ Sall whose elements are all "possible" multi-particle paths that will take

the particles from given initial to final positions. This process is best illustrated

with an example.

Let us say for example that we wish to obtain all feasible paths that will take

two particles from initial vertex positions 2 and 14 to their respective final vertex

positions 15and 3 as shown in Fig 4.5.Let S1 denote all possible paths from vertex

2 to vertex 15 for particle one. Let S2 denote all possible paths from vertex 14 to

vertex 3 for particle two. Following steps outlined in the earlier subsection (4.1.3)

we can obtain the sets S1 and S2. Sets S1 and S2 are shown in Fig. 4.5 and set

Sall = S1×S2 is shown in Fig. 4.6. However, not all paths of the set Sall are feasible.

Paths where two particles collide or cross over need to be eliminated from the list.

After eliminating such paths we are left with a set of feasible paths Sfeasible as shown

in Fig. 4.7.
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Figure 4.5: In this figure, S1 denotes the set of all possible paths for particle 1

traveling from vertex 2 to vertex 15 and S2 denotes the set of all possible paths for

particle 2 traveling from vertex 14 to vertex 3. The path of each particle illustrated

on the grid is shaded in the sets S1 and S2.
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6 10 14 152 15 11 7 314
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Sall =     
S1 x S2

Figure 4.6: This figure denotes the set Sall = S1×S2 where S1 is the set of all paths

for particle 1 traveling from vertex 2 to vertex 15 and S2 is the set of all paths for

particle 2 traveling from vertex 14 to vertex 3.
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Figure 4.7: Not all paths of the set S1 × S2 are feasible. Paths in which the two

particles collide are unfeasible. Situations that cause the path to be unfeasible are

shown at the top. Unfeasible paths in the set are marked by a cross, and the points

on these paths where particle collision occurs are highlighted with a red ellipse.

Feasible paths are marked with a check mark. The set of feasible paths forms the

set Sfeasible.
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4.2 Picking the Most Efficient Path

In this section we shall present a method for picking the most efficient path

out of the list of feasible paths obtained in the previous section. The most efficient

path is defined as the one that transports particles between given initial and final

positions in the shortest time. In subsection 4.2.1 we arrange the set of feasible paths

in a network graph to enable the use of standard optimal path planning methods.

Then in subsection 4.2.2 we assign a cost to each segment of the network graph to

quantify the efficiency of each segment of the network. Finally, in subsection 4.2.3

we demonstrate the use of the Dynamic Programming algorithm to pick the most

efficient path.

4.2.1 Representing High Probability Paths as a Network Graph

The set of feasible paths can be represented in a compact notation as shown

in Fig. 4.8. This network diagram enables us to use a standard algorithm called

Dynamic Programming to pick the most efficient path.

4.2.2 Computing the Cost for Each Path Segment

The next step in the process is to assign a cost to each segment of the network

graph to quantify the efficiency of each path segment. We chose this cost to be the

time needed to traverse the particular segment. As an example, let us compute the

cost associated with the segment marked in Fig. 4.9.

Physically, it means that particle one moves from vertex 2 to vertex 6 and
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Figure 4.8: The set of feasible paths are arranged in a compact network diagram

to enable the use of a standard algorithm called Dynamic Programming for picking

the most efficient of these paths.
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Time to travel segment

Figure 4.9: We assign a cost to each segment of the network graph. For the purpose

of our problem, we have chosen this cost to be the minimum time required to

travel the segment given the voltage constraint of ±10V on each electrode. In this

illustration the minimum time required for particle one and two to simultaneously

travel from vertex 2 to vertex 6 and from vertex 14 to vertex 15, respectively, is

assigned to the segment marked in the figure.
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particle two moves from vertex 14 to vertex 15. The motion is restricted such that

both particles move with the same speed at any given instant, though that speed

may vary as they move along their paths. Given that the distance between two

adjacent vertices is a, let ̺ be a parameter that linearly increases from 0 to a as

particles move from the beginning of a segment to the end of of the segment. Let

Sp(̺) ≥ 0 denote the speed of the particle when at position 8r corresponding to

parameter ̺. The minimum time needed to travel the segment is given by

tmin =

t∫

0

dt =

a∫

0

d̺

Spmax(̺)
, (4.1)

where Spmax(̺) is the maximum speed at which the particles can be actuated, given

the actuation limit of ±10V on each electrode.

Now, let us compute Spmax(̺). From the previous chapter we know that the

voltage required to steer particles at position 8r with speed Sp(̺) along direction

vectors ê is given by

8γ = A‡(r)Sp(̺)ê. (4.2)

Taking the infinity-norm ‖‖∞ on both sides we get

‖8γ‖∞ =
∥∥A‡(8r)Sp(̺)ê

∥∥
∞
= Sp(̺)

∥∥A‡(8r)ê
∥∥
∞
, (4.3)

as Sp(̺) ≥ 0. ‖8γ‖∞ represents the modulus of the largest element of 8γ. The actuation

limit of ±10V for each electrode is mathematically expressed as ‖γ‖∞max = 10. Now

we want to find the maximum speed Spmax(̺) with which we can steer the particle

at a given position. If ‖8γ‖∞ < 10 for a particular value of Sp(̺) we can scale up

both Sp(̺) and γ up to the point where ‖8γ‖∞ = 10. At this point, Sp(̺) becomes
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Spmax(̺). Similarly, if ‖8γ‖∞ > 10 for a particular value of Sp(̺) we can scale up

Sp(̺) and correspondingly 8γ up to the point where ‖8γ‖∞ = 10. At this point Sp(̺)

becomes Spmax(̺). Hence Sp(̺) = Spmax(̺) when ‖8γ‖∞ = 10.

Plugging these values in equation (4.3) we have

10 = Spmax(̺)
∥∥A‡(8r)ê

∥∥
∞

(4.4)

or

Spmax(̺) =
10

‖A‡(8r)ê‖∞
(4.5)

Substituting (4.5) in equation (4.1) we determine that the cost associated (or the

minimum time required to travel the segment in Fig. 4.9) is given by

tmin =

t∫

0

dt =

a∫

0

d̺
10

‖A‡('r)ê‖
∞

. (4.6)

We calculate the cost for each segment in this way.

4.2.3 Using Dynamic Programming to Pick the Most Efficient Path

In our example, there are 20 possible routes from the initial to the final posi-

tion. Our objective is to pick the most efficient path out of all these possible paths.

One way to do this would be to calculate the travel time for each path and find

the path that takes the minimum time to traverse. While this is feasible for sim-

ple cases, it rapidly becomes computationally expensive as the number of particles

increases or as the number of steps in the path increases. To tackle this issue,

an algorithm known as the Dynamic Programming [31] can be used. It helps pick
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Figure 4.10: This figure shows the network diagram of all feasible paths for two

particles traveling from initial vertices 2 and 14 to the final vertices 15 and 3. In

addition, the cost associated with each segment (defined as the time to travel that

particular segment) is also indicated.

the most efficient path with much less demanding computations. In this method,

instead of starting from the initial node and attempting different routes to the final

node, the algorithm works backward from the final node to find the fastest route as

described below.

In order to effectively describe this algorithm, we split the procedure into 4

stages (Stage 1, Stage 2, Stage 3, Stage 4). In addition, each of the 20 paths are

resolved into 5 steps (Step 0, Step 1, ..., Step 4). This is illustrated in Fig. 4.11.

• In Stage 1 of the algorithm, we consider the nodes in Step 3 and find the most

efficient route from each of these nodes to the final node. As an example, we

find the most efficient path from node (11,2) to the final node (15,3). Since, in

this case, there is only one choice it is the fastest route. We then record this
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as the least time needed to go from node (11,2) to the final node (15,3) in the

lower right corner of node (11,2), in bold red print. We repeat the procedure

for the remaining nodes (11,7) and (14,7) in Step 3 as illustrated in Stage 1

of Fig. 4.11.

• In Stage 2 of the algorithm, we move one step back to the nodes in Step 2 and

find the most efficient route from each of these nodes to the final node. As

an example, we consider node (7,6) which is highlighted in blue in Fig. 4.11.

Note that, in this case, we have two possible options. Route 1, which connects

node (7,6) to node (11,2) to node (15,3), and Route 2 which connects (7,6)

to node (11,7) to node (15,3). For Route 1, the total travel time is 1.6s+0.9s

= 2.5s. For Route 2, the total travel time is 2.0s + 1.4s = 3.4s. We see that

Route 1 is the fastest path. Hence we retain Route 1 and eliminate Route 2

(i.e. we erase the arrow from (7,6) to (11,7) corresponding to Route 2) and

record the minimum travel time for node (7,6) in the lower right corner of the

node in bold red print, as illustrated in Stage 2b of Fig. 4.11. We repeat this

process for other nodes in Step 2.

• We continue this process, moving back one step at a time and for each node

in the Step, retaining only the fastest path to the final node.

• At the end of this procedure, for every node in the network diagram, we obtain

the minimum travel time to the final node and the optimal direction to follow

in leaving the node. The fastest or the most efficient path can be traced from

the initial node to the final node as shown in Stage 4 of Fig. 4.11.
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Figure 4.11: This figure illustrates the Dynamic Programming algorithm for finding

the optimal path for a specific two particle case. A detailed description of this

algorithm is provided in subsection 4.2.3.73



4.3 Simulation Results

In this section we present some simulation results. For the two particle exam-

ple used for illustration, it was possible to compute the optimal path by hand, but as

the number of particles and the length of the path increases, the number of feasible

paths also increases rapidly, necessitating computer assistance. The table shows the

number of feasible paths for two, three, four, and five particles respectively for a six

step path.

Number of particles Number of feasible paths (6 step path)

2 66

3 306

4 3886

5 11780

The number of feasible paths change with the specific case being considered,

nonetheless it serves to make the point that the number of feasible paths rapidly

increases with an increase in number of particles. A MATLAB program was written

to automate steps outlined in section (4.1) and (4.2). Fig. 4.12, Fig. 4.13, Fig.

4.14 , and Fig. 4.15 show optimal paths for two, three, four, and five particles

respectively.
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time = 1.9s

time = 0s time = 6.5s

time = 4.2s time = 10s

time = 8.2s

Figure 4.12: This figure shows the optimal path for two particles computed using the

Dynamic Programming algorithm described in the earlier section. The initial and

final positions of the particles are shown in the top left sub-figure and the bottom

right sub-figure, respectively. 75



time = 0s

time = 3s

time = 5.4s

time = 8s

time = 11s

time=15.2s

Figure 4.13: This figure shows the optimal path for three particles computed using

the Dynamic Programming algorithm described in the earlier section. The initial

and final positions of the particles are shown in the top left sub-figure and the

bottom right sub-figure, respectively. 76



time = 0s

time = 5.4s 

time = 9.4s

time = 18.4s

time = 24s

time = 28.1s

Figure 4.14: This figure shows the optimal path for four particles computed using

the Dynamic Programming algorithm described in the earlier section. The initial

and final positions of the particles are shown in the top left sub-figure and the

bottom right sub-figure, respectively. 77



time = 0s

time = 30.7s

time = 57s

time = 71.1s

time = 76.6s

time = 82.2s

Figure 4.15: This figure shows the optimal path for five particles computed using the

Dynamic Programming algorithm described in the earlier section. The initial and

final positions of the particles are shown in the top left sub-figure and the bottom

right sub-figure, respectively. 78



Chapter 5

Experiments

Armani and Probst were the first to demonstrate electroosmotic particle steer-

ing in experiments in 2003 [1]. They used a cross channel device design and a simple

control algorithm that created a flow to the North if the particle was to the South

of its desired position (or West if it was East of its desired position, etc). With

this simple control algorithm it was not possible to steer more than one particle.

Around that time, the author developed multi-particle control algorithms, that he

analyzed, and validated through simulations. These algorithms were then adapted

to the experiments by Probst, who subsequently demonstrated three particle steer-

ing in experiments in 2005. At this stage, Cummins became involved in the project

and during his overlap with the author, Cummins improved the vision system and

created an improved Matlab graphical user interface. At the end of 2005, through

the control theory development efforts of the author and Probst’s contributions,

we were able to control 3 particles but not more. Both the author and Probst led

a thorough investigation into the factors that prevented demonstration of steering

more than three particles in experiments. In this vein, the author proved that the

maximum particle actuation speed dropped rapidly with increase in the number of

particles, and for more than three particles, the actuation was no longer sufficient to

overcome the parasitic pressure flow. To address this issue, the author redesigned
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the devices to enhance particle actuation by a factor of more than 5. The author,

Cummins, and Probst then used these high performance devices to demonstrate

steering of five particles in experiments(2008). This chapter focuses on the author’s

contribution to those experiments.

In section 5.1 we present one and three particle steering results through the

efforts of Probst and Armani. In section 5.2 we identify the main roadblock to

demonstrating steering of more than three particles in experiment - namely, a lack

of sufficient actuation. In section 5.3 we identify the most feasible method for

enhancing actuation - redesigning the shape of the device. In section 5.4 we present

details about designing and fabricating molds for the high-actuation devices. In

section 5.5 we outline the procedure used to condutct experiments. In section 5.6 we

provide experimental results for steering of four and five particles. In section ?? we

introduce a list of critical issues relating to the experimental method and apparatus

that had to be sorted out to demonstrate five particle steering in a reproducible

fashion. Finally, in section 5.8 the author’s specific contributions to demonstrating

steering of four and five particle experiments are listed.

5.1 Overview of One and Three Particle Steering Results

Fig. 5.1 shows the steering of a polystyrene microbead along a figure 8 in the

four-electrode device through the efforts of Armani and Probst. Fig. 5.2 shows the

work of Probst, in which two yeast cells are guided along circular paths while a third

yeast cell is steered along a "UMD" path. Details about experimental setup and
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Figure 5.1: Control of a polystyrene bead along a figure 8 through the efforts of Mike

Armani and Roland Probst. Left: photograph of a four channel microfluidic device

with a figure "8" path superimposed on the image. Right: the actual path of the 5

micrometer polystyrene bead (Polysciences Inc., black circle) in the feedback control

experiment.Snapshots are shown at six equally-spaced times. The bead follows the

required trajectory to within a tolerance of 3 micrometers.

procedure are provided in [1].

5.2 Identifying Roadblocks to Demonstrating Five Particle Steering

in Experiment - Insufficient Actuation

As mentioned earlier in chapters 3 and 4, we found that the maximum speed

to which the particles could be actuated dropped drastically as particles came close

to one another or as the number of particles increased. As a first line of precaution,

we ensured that at least a distance of a/
√
2 units is maintained between each pair

of particles at all times, using the method outlined in chapter 4. Still the drop in

maximum particle speed with an increase in the number of particles was very rapid
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1 2

3

Figure 5.2: Steering of three yeast cells (5 micrometer diameter) around two circles

and a "UMD" path through the efforts of Probst. The yeast cells are visible as black

dots with a white center (marked with a white arrow in each image). The white

curves are the trajectories that the target cells have traced out. The three yeast

cells are being steered within an accuracy of one pixel (corresponding to less than 1

micrometer).
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and for more than three particles, the electroosmotic actuation was not sufficient

to overcome the parasitic pressure driven flows that existed in the device at all

times. Fig. 5.3 gives the maximum particle steering speeds for one to five particles,

while ensuring a minimum distance between any pair of particles. Based on the

numbers shown in this figure it was clear that in order to demonstrate steering of

five particles, the electroosmotic actuation had to be increased by at least a factor

of five.

5.3 Evaluating Ways of Increasing Actuation

In order to enhance electroosmotic actuation, it is essential to first identify its

drivers. The electroosmotic velocity at the tip of the microfluidic channel is given

by

VEOtip =
ǫζ

η

−→
E tip. (5.1)

Therefore, there are four drivers of electroosmotic actuation - the permittivity of

the fluid ǫ, fluid viscosity η, zeta potential ζ, and the electric field
−→
E tip. If we are

to increase the electroosmotic fluid velocity at the microchannel inlet we have the

following four options:

1. Increase the permittivity of the fluid ǫ

2. Increase the zeta potential ζ at the surface of the microchannels

3. Reduce the fluid viscosity η

4. Increase the electric field
−→
E tip
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Figure 5.3: This figure shows, for a typical case, the maximum particle steering

speed and singular values of the A matrix as the number of particles increase. For

greater than three particles, the maximum particle steering speed is much lower

than the mild parasitic pressure flow that always exists in the device, hence the

inability to steer more than three particles with the previous setup.
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The permittivity of water ǫ and its viscosity η are practically constant at

normal operating conditions and were therefore ruled out. The zeta potential ζ is

a measure of the surface charge density on the walls of the microfluidic channels.

The higher the surface charge density, the higher the magnitude of ζ. To increase

the charge density we could look at either modifying the surface chemistry of the

microfluidic channels or build microfluidic channels with materials that have higher

zeta potential. For all experiments up to the steering of three particles, we had

used microchannels that were etched in PDMS and were covered with a Pyrex

glass slide. This is one of the most common and mature technologies for building

electroosmotically actuated microfluidic systems. Since we lacked the expertise in

the area of surface modification, and it appeared to be a very resource-intensive

path to pursue, we chose to look into enhancing electroosmotic flow by enhancing

the electric field.

The electric field at the tip of the microfluidic channel is a function of the

shape of the channels. The strength of the electric field
−→
E tip can be enhanced by

several times by appropriately designing the channel shape. We chose to express the

shape of the channel (and therefore the electric field at the channel inlet) in terms

of 7 parameters h1, h2, t1, t2, t3, l1 and l2 as shown in Fig. (5.4).

Of these, we chose h1, t1, t2, l1, and l2 to have specific values for the reasons

outlined below. The parameters h2 and t3 were chosen such that the strength of the

electric field
−→
E tip was enhanced by a factor greater than 5 as compared to a straight

channel.
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h1, h2, t1, t2, t3, l1, and l2 as shown in this figure. The electric field strength at various

points in the device is also indicated.
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• We chose h1 to be 5 µm. The rationale behind this choice was the following.

We used polystyrene beads of size 1.2 µm and 2.2 µm for conducting experi-

ments. Having h1 = 5 µm ensured that the particle motion was constrained

in the z direction. Without such constraints, the particles would move in

and out of the camera focus during experiments. In addition, having h1 = 5

µm ensured that there was sufficient space between the particles and channel

ceilings and we found that it helped avoid the issues of clogged channels.

• We chose t1 to be 25 µm. This ensured that the central chamber was entirely

visible in the microscope field of view when using a 20× lens.

• We chose t2 to be 85 µm. This choice was primarily driven by the fabrication

tolerance limitations imposed by the mold creation technology as outlined in

section 5.4. The trapezoidal structure (with sides t2, t3 and height l1) would

have to be fabricated as a second layer when making the mold. The fabrication

technology demanded that devices be designed such that they will work despite

a 30 micrometer error in the alignment between layers in all directions. So we

chose t2 to be 25 µm +2× 30 µm = 85 µm.

• We chose l1 to be 150 µm based on the fact that 12 structures of size t2 would

have to be accommodated in a radial configuration.

• We chose l2 to be 1800 µm because we found that l1 + l2 ≈ 2 mm to be the

length that allowed reliable manual cutting out of reservoirs in the device.

• The parameter h2 was completely free and t3 was subject to the upper con-
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straint that 12 structures of size t3 would have to be accommodated in a radial

fashion.

In order to identify the right values for parameters h2 and t3 that would

enhance
−→
E tip by a factor greater than 5, we first express

∥∥∥−→E tip

∥∥∥
2∥∥∥−→E tip_st

∥∥∥
2

(5.2)

where
−→
E tip_st is the electric field at for the straight channel in terms of the para-

meters h2 and t3. To simplify our analysis we first made the following assumptions

and approximations:

• We assumed a uniform electric field
−→
E tip inside the straight channel.

• We ignored the edge effects at the intersection and assumed that as the electric

flux lines relax from a cross section area of h1t1 square units to h2t2 square

units the electric field drops by a factor equal to the ratio of the areas. So the

electric field at the beginning of the tapering region would be
−→
E tip(h1t1/h2t2).

• For the tapering region we assumed a planar radial electric field, as would be

the case for the electric field in a sector between two concentric cylindrical

surfaces. The electric field in such a case is perpendicular to the concentric arcs

as shown in Fig. 5.4. As the electric field flux lines diverge, the electric field

strength drops by a factor that is equal to the ratio of area of the concentric

surface to the area of the surface S0 as indicated in Fig. 5.4.

• As the radii of the concentric surfaces are large and the conical angle is small

(around 15◦ or 0.26 radians) we assumed that the arcs tend to straight lines.
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• The graph of the strength of the electric field along the x axis is as shown in

Fig. 5.5.

• The direction of the electric field is assumed to be parallel to the x axis.

By the definition of the potential difference we have that

γAB =

∫ A

B

−→
E · d−→x =

∫ A

B

∥∥∥−→E
∥∥∥
2
dx = Area under the curve as in Fig.5.5 (5.3)

=⇒ γAB ≈
∥∥∥−→E tip

∥∥∥
2
l1 +

1

2

(
h1t1
h2t2

+
h1t1
h2t3

)∥∥∥−→E tip

∥∥∥
2
l2 (5.4)

=⇒
∥∥∥−→E tip

∥∥∥
2
≈

γAB[
l1 +

1
2

(
h1t1
h2t2

+ h1t1
h2t3

)
l2

] (5.5)

For a straight channel the strength of the electric field
∥∥∥−→E tip_st

∥∥∥
2

is obtained by

setting h1 = h2 and t1 = t2 = t3 in equation (5.5), hence we have

∥∥∥−→E tip_st

∥∥∥
2
≈

γAB
[l1 + l2]

. (5.6)

Dividing equation (5.5) by equation (5.6) we have

∥∥∥−→E tip

∥∥∥
2∥∥∥−→E tip_st

∥∥∥
2

≈
[l1 + l2][

l1 +
1
2

(
h1t1
h2t2

+ h1t1
h2t3

)
l2

] . (5.7)

We had fixed the values for paramters h1, t1, t2, l1, and l2 as mentioned earlier. We

have the freedom to choose any set of values for h2 and t3 (subject to constraints

menteiond above) to meet our design objective of having

∥∥∥−→E tip

∥∥∥
2∥∥∥−→E tip_st

∥∥∥
2

> 5. (5.8)

We chose h2 to be 10 µm, t3 to be 500 µm.These values enhanced electroosmotic

actuation by a factor of around 7.5 over that of a straight channel.
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Actuation = 7.5 x the actuation in a straight channel

120 microns

120 microns

Figure 5.6: 3D rendering of the high-actuation microfluidic device. The electroos-

motic actuation in this device is 7.5 times the actuation achieved in the device with

straight channels.
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5.4 Designing and Fabricating Molds for High-Actuation Devices

The Stanford microfluidics foundry (http://thebigone.stanford.edu/foundry/)

provides an excellent service wherein a researcher can submit Autocad files of a 3D

device design and, for a fee of $150, an SU8 mold is created, with a turn around

time of 2 weeks. We utilized these services to fabricate the SU8 mold.

The 3D molds are created using a multilayer soft lithography process. In

other words, the 3D structure is constructed by successively spin coating a layer

of SU8, UV curing only desired portions of the layer and chemically etching away

the uncured portion. The foundry does not reveal the exact process specifications

but the general principle of soft lithography is common knowledge in microfluidic

fabrication labs [32].

The structure for the high actuation device shown in Fig. 5.6 can be decom-

posed into three layers. The shapes of the first, second, and third layers are shown

in Fig. 5.7, Fig. 5.8, and Fig. 5.9 respectively. The justifications for the various

feature sizes are given in section 5.3.

In layer 2 (Fig. 5.8), the circles represent support posts. The support post

diameter was chosen as 30 microns as it was the smallest feature size for free standing

structures that our supplier could reliably fabricate. The spacing between the posts

was chosen as 150 microns because structures with any lower aspect ratio were prone

to collapse.

In layer 3 (Fig. 5.9), the reservoir placeholders were designed as annular

structures because structures with large surface areas are prone to peeling due to
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115µm
t1=25µm

l1 + fabrication tolerance = 
150µm+30µm = 180µm

Figure 5.7: Autocad drawing of layer 1 of the high-actuation microfluidic device.
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Figure 5.8: The yellow colored portion of the Autocad drawing represents layer 2 of

the high-actuation microfluidic device. The 30 micron diameter circles are support

posts. Their purpose is to prevent the channel ceiling from collapsing.
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differential thermal stresses developed in the SU8 and silicon wafer substrate during

fabrication. Alignment marks for all the three layers, which are essential to ensure

alignment between the different layers during the fabrication process are also shown.

5.5 Experimental Methods

The author used the following procedure to conduct experiments towards

achieving four- and five-particle steering [1]. PDMS devices were obtained from

the SU8 molds through replication molding. For this, 10 parts of silicone elastomer

(Sylgard 184 Dow Corning) was mixed with 1 part curing agent (Sylgard 184 Dow

Corning), poured over the SU8 mold to a height of 0.5 mm, and cured at 80◦C for

one hour. A razor was used to cut a section of the PDMS containing the microchan-

nels and peeled by hand. Reservoirs were further cut out in the PDMS by hand

using a razor blade. The PDMS with the microchannels was then pressed on to a

Pyrex glass wafer to create sealed microchannels. The PDMS conforms to minor

imperfections in the glass and gets bonded to it by weak Van der Waalls forces

creating a reversible and watertight seal [33], [34].

To fill the microfluidic device, one drop of 2.2 micron fluorescent polystyrene

beads (Duke Scientific) was added to 8 ml of DI water (J. T. Baker HPLC grade)

and a drop of this solution was placed in one of the reservoirs at the channel inlet.

After all the micro-channels filled by capillary action, reservoirs were filled with the

solution. Platinum electrodes from the amplifier board attached to the computer

were placed inside the reservoirs.
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Figure 5.9: The green-colored portion of the Autocad drawing represents layer 3 of

the high actuation microfluidic device. The annular structures are essentially place

holders for reservoirs. Alignment marks for all three layers are also shown.
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The microfluidic device was then placed under a microscope (Nikon TS100,

20x lens), illuminated by a bright 1 watt blue LED source (465 nm). A high pass

filter (480 nm and longer, Chroma Technology Corporation) was placed before the

camera as the polystyrene beads which emit light (510 nm - green) are seen more

clearly as bright green on a gray background.

A 40 fps, 480 by 640 gray-scale pixel camera (Vision Components, VC2028E,

Ettlingen, Germany) was used to transmit images to the computer. The images

were then fed to the image processing algorithm that identified particle positions.

The control algorithm then computed the voltage that needed to be applied to

the electrodes to steer the particles along desired trajectories, and this voltage was

applied to the electrodes through the amplifier attached to the computer. The

selection of particles to be steered, input of the paths along which they should be

steered, and changing the value of controller gain k was done through a graphical

user interface. Details of this setup can be found in [1], [35].

5.6 Experiment Results - Five particle steering

The experimental demonstration of up to three-particle steering was published

in [1]. This section presents experimental results for four- and five-particle steering

experiments.
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Figure 5.10: Steering of four fluorescent beads (2.2µm, Duke Scientific) along an

optimal path between given initial positions (corresponding to t = 0s) and final

positions (corresponding to t = 22s). The particles being steered are enclosed in a

square box. The path traversed by the particle is marked in red. The particles are

controlled to an accuracy of better than 5 µm.
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Figure 5.11: Steering of four fluorescent beads (2.2 µm, Duke Scientific) along an

optimal path between given initial positions (corresponding to t = 0s) and final

positions (corresponding to t = 27s). The particles being steered are enclosed in a

square box. The path traversed by the particle is marked in red. The particles are

controlled to an accuracy of better than 5µm.
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Figure 5.12: Steering of five fluorescent beads (2.2µm, Duke Scientific) along an

optimal path between given initial positions (corresponding to t = 0s) and final

positions (corresponding to t = 32s). The particles being steered are enclosed in a

square box. The path traversed by the particle is marked in red. The particles are

controlled to an accuracy of better than 5 µm.

100



Figure 5.13: Steering of five fluorescent beads (2.2µm, Duke Scientific) along an

optimal path between given initial positions (corresponding to t = 0s) and final

positions (corresponding to t = 63s). The particles being steered are enclosed in a

square box. The path traversed by the particle is marked in red. The particles are

controlled to an accuracy of better than 5µm.
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5.7 Lessons Learned

When conducting experiments, we found that taking the following precautions

can immensely reduce the effort needed in conducting experiments.

1. The thickness of the PDMS device should be about 0.5 mm for twelve channel

devices. The reason for this is that, the reservoirs are very close to each other

and they have to be cut out by hand using a blade. This is a very delicate

and meticulous task and is very difficult to perform on thick PDMS devices.

2. When cutting out reservoirs in PDMS devices, care should be taken to ensure

that the side etched with the microchannels faces upwards. This tends to

prevent blockage of the microchannels due to improperly cut PDMS rough

edges.

3. During the experiments, polystyrene beads stick to the Pyrex glass wafer and

PDMS device and hence the devices cannot be used before removing the beads

from the previous experiments. Creating a fresh batch of PDMS devices for

each experiment is tedious. To reuse the PDMS devices, they should be

thoroughly cleaned after each experiment. For the cleaning to be effective,

the PDMS layer should first be peeled off from the Pyrex glass wafer. The

polystyrene beads stuck to the PDMS layer can be removed by placing it in

a sonicator, and then blow drying it with a hair dryer. Dust and oils on the

PDMS can be removed by placing a piece of scotch tape on the surface and

peeling it off. The Pyrex glass is best cleaned using warm water and household
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dish detergent (Dawn).

4. Often, filling the microchannels with DI water using capillary action can be

challenging. A common practice is to place a drop of ethanol at the inlet

of one of the microchannels, which due to its higher surface tension almost

instantly fills up all microchannels, and then all reservoirs can be filled with

DI water. We found this to be one of the major causes of inconsistency in

our experiments, as often, ethanol would seep under the PDMS and short

electrical connection between two reservoirs leading to unpredictable actuation

behavior. It is recommended that ethanol not be used, and only DI water be

used directly to fill the microchannels. If the fluid gets stuck, gently tapping

the PDMS with a finger can prod the fluid to fill the channels. While this may

take a few minutes, it leads to more predictable behavior of the device.

5.8 Author’s Specific Contributions to Experiments

The author’s specific contributions to the 4 and 5 particle steering experiments

are listed below:

1. Designed and developed detailed specifications for the high actuation microflu-

idic device.

2. Created Autocad files for the device design and got the SU8 molds fabricated

from Stanford microfluidics foundry.

3. Fabricated and tested twelve channel PDMS devices using the mold.
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4. Conducted and troubleshot all experiments for four- and five-particle steering

experiments.

5. Improved experimental procedures to enhance device reusability and reduce

researcher fatigue associated with conducting experiments (listed later in this

section).
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Chapter 6

Conclusion

This thesis shows how to combine feedback control and microfluidics to steer

many particles independently in microfluidic systems. This is an issue that is im-

portant for handling of biological materials in miniaturized systems or for handling

particles like quantum dots that cannot be manipulated using laser tweezers.

Equations governing electroosmotic flow at the microscale are easily inverted

and therefore these flows are amenable to control. We have exploited this finding

to design a feedback controller to precisely control the motion of micro-particles in

planar electroosmotically-actuated microfluidic devices. We have also successfully

demonstrated the use of this controller to steer up to five particles in simulations

and experimentally.

In order to efficiently steer particles in the microfluidic devices, it is essential

that particles do not come very close to each other during the steering process. To

this end, we have developed a systematic method of generating paths which ensures

that a certain minimum distance is always maintained between any two particles at

all times. We have also outlined an optimal path planning method to pick the most

efficient of these paths.

As the number of particles increase, the maximum speed at which they can be

steered drops rapidly. If the electroosmotic actuation is weaker than the parasitic
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pressure drift in the device, we are unable to steer the particles. This was the

primary obstacle which initially prevented us from demonstrating steering of more

than three particles experimentally. To this end, we designed devices in which the

elecroosmotic actuation was several times higher than that in our earlier devices.

We have used these high actuation devices to demonstrate steering of five particles

in experiment.

Thus we have shown that feedback control, optimal path planning, and design

of high performance devices can enable sophisticated particle steering capabilities

in electroosmotically actuated microfluidic devices. The entire setup of microfluidic

device, vision system, and computer can be miniaturized, hence permitting laser

tweezer like capabilities in a hand held format.
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Appendix A

Primer on Singular Value Decomposition

Any matrix A ⊂ Ra×b of rank r can be factored [29] as:

A = QΣW T =

[
−→q 1

−→q 2 .. −→q a

]






σ1

σ2

. . .

σr











−→w T
1

:

:

−→w T
b






. (A.1)

The columns of Q ⊂ R
a×a given by −→q i (i = 1, 2, .., a) are eigenvectors of AAT

and are orthonormal.. The columns of W ⊂ R
b×b given by −→w i (i = 1, 2, .., b) are

eigenvectors of ATA and are orthonormal. The r singular values on the diagonal of

Σ ⊂ Ra×b are the square roots of the non-zero eigenvalues of both AAT and ATA.

The first r columns of W form the basis for the rowspace of A.The last b−r columns

of W form the basis for the nullspace of A.

The Singular Value Decomposition chooses these bases in an extremely special

way. If A multiplies a column of W , it produces a multiple of a column of Q. More

specifically

A−→w i = σi
−→q i for all i ≤ r, (A.2)

and

A−→w i = 0 for all i > r. (A.3)

If AT multiplies a column of Q, it produces a multiple of a column of W . More
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specifically

AT−→q i = σi
−→w i for all i ≤ r, (A.4)

and

AT−→q i = 0 for all i > r. (A.5)

Also, the non-zero eigenvalues of both AAT and ATA are σ21, σ
2
2, ..., σ

2
r .Hence

AAT−→qi = σ2i qi. (A.6)

Premultiplying by (AAT )−1 and dividing by σ2i we have

−→q i
σ2i
= (AAT )−1−→q i. (A.7)

This identity is used in chapter 3.
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