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In this thesis, we show how to combine microfluidics and feedback control to
independently steer multiple particles with micrometer accuracy in two dimensions.
The particles are steered by creating a fluid flow that carries all the particles from
where they are to where they should be at each time step. Our control loop comprises
sensing, computation, and actuation to steer particles along user-input trajectories.
Particle positions are identified in real-time by an optical system and transferred to
a control algorithm that then determines the electrode voltages necessary to create
a flow field to carry all the particles to their next desired locations. The process

repeats at the next time instant.



Our method achieves inexpensive steering of particles by using conventional
electroosmotic actuation in microfluidic channels. This type of particle steering has
significant advantages over other particle steering methods, such as laser tweezers.
(Laser tweezers cannot steer reflective particles, or particles where the index of re-
fraction is lower than that of the surrounding medium. More sophisticated optical
vortex holographic tweezers require that the index of refraction does not differ sub-
stantially from that of the surrounding medium.). In this thesis, we address three
specific aspects of this technology. First, we develop the control algorithms for
steering multiple particles independently and validate our control techniques using
simulations with realistic sources of initial position errors and system uncertainties.
Second, we develop optimal path planning methods to efficiently steer particles be-
tween given initial and final positions. Third, we design high performance microflu-
idic devices that are capable of simultaneously steering five particles in experiment.

(Steering of up to three particles in experiment had been previously demonstrated

[1].)
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3.9 This figure shows, for a typical case, the maximum particle steering
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that always exists in the device; hence the inability to steer more
than three particles with the existing setup. The singular values of
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speed drops rapidly with an increase in the number of particles.

The numbers represent vertices of the grid. If at time ¢t = 0Os, each
particle is at one of the vertices of the grid, and for all time ¢ > 0Os,
the motion of the particles is constrained along the grid, all particles
move with the same speed at any given time, and the particles are on
trajectories such that they do not collide, then, the minimum distance

between any two particles at all times is always greater than or equal
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Chapter 1
Introduction

1.1 Background

The ability to steer individual particles inside microfluidic systems is useful
for navigating particles to localized sensors, cell sorting, sample preparation, and
combinatorial testing of particle interactions with other particles, with chemical
species, and with distributed sensors. A variety of methods are currently used to
manipulate particles inside microfluidic systems: individual particles can be steered
by laser tweezers [2], [3], [4]; they can be trapped, and steered to some degree,
by dielectrophoresis (DEP) [5], [6], [7]; and by traveling-wave-dielectrophoresis [7],
[8]; held by acoustic traps [9]; steered by manipulating magnets attached to the
particles [10]; and guided by MEMS pneumatic array [11]. Cohen [12], [13] uses a
similar feedback control approach, invented independently after ours, to trap and
steer a single particle, by using electroosmotic or electrophoretic actuation.

Of these methods, laser tweezers are the gold standard for single particle ma-
nipulation. Askin’s survey article [2] provides a history of optical trapping of small
neutral particles, atoms, and molecules. Current laser tweezer systems can create
up to four hundred three-dimensional traps, they can trap particles ranging in size
from tens of nanometers to tens of micrometers, and trapping forces can exceed 100

pN with resolutions as fine as 100 aN, and the positioning accuracy can be below



tens of nanometers[3|, [14]. However, optical tweezers require lasers and delicate
optics, they are expensive, and the whole system is unlikely to be miniaturized into
a hand-held format. An additional disadvantage of laser tweezers is that it can only
be used to steer particles with a refractive index greater than that of the surrounding
medium. For example, in the quantum chip project at University of Maryland, laser
tweezers cannot be used to steer quantum dots to place them at precise locations
on a substrate. The aforementioned methods (DEP, acoustic traps, manipulation
via attached magnets, and steering via pneumatic arrays systems) can be miniatur-
ized into handheld formats but their steering capabilities are not as sophisticated as
those of laser tweezers.

Our approach uses vision-based microflow control to steer particles by correct-
ing for particle deviations - at each time instant we create a fluid low to move the
particles from their current position to their intented destination. This allows very
simple devices, actuated by routine methods (electroosmosis), to replicate the pla-
nar steering capabilities typically requiring laser tweezers. We have shown that our
approach permits a device with four electrodes to steer a single cell, a device with
eight electrodes to steer up to three particles, and a device with twelve electrodes
to steer up to five particles simultaneously. The method is noninvasive (the moving
fluid simply carries the particles along), the entire system can be miniaturized into
a handheld format (both the control algorithms and the optics can be integrated
onto chips), we can steer almost any kind of visible particle (neutral particles are
carried along by the electroosmotic flow, charged particles are actuated by a combi-

nation of electroosmosis and electrophoresis), and the system is cost effective (the



most expensive part is the camera and microscope, and these will be replaced by an
on-chip optical system for the next generation of devices).

Due to the correction for errors provided by the feedback loop, the flow control
algorithm steers the particles along their desired paths even if the properties of
the particles (their charge, size, and shape) and the properties of the device and
buffer (the exact geometry, the zeta potential, pH, and other factors) are not known
precisely. The fundamental disadvantage of our approach is its lower accuracy as
compared to laser tweezers: our positioning accuracy will always be limited by
the resolution of the imaging system and by the Brownian motion that particles
experience in-between flow control corrections. Our current optical resolution is of
the order of one micron, and the Brownian drift during each control time step is
around 100 nm. In addition it is not possible to steer a large number of particles
with our method, like it is with laser tweezers.

Both feedback and microflows are essential for our particle steering capability.
Feedback is required to correct for particle position errors at each instant in time.
At the microscale, the Navier-Stokes equations reduce to a set of simpler equations
that are easy to invert and it is relatively straightforward to calculate the necessary
actuation to steer multiple particles at once. Note: The Navier-Stokes equations
governing the motion of macroflows are complex and difficult to invert making it

hard to determine the necessary actuation to steer particles.



1.2 Thesis Outline

This thesis is concerned with discussing certain theoretical and experimental
challenges that were overcome in the course of demonstrating multi-particle steering.
Building upon chapter 1, chapter 2 presents equations governing fluid and particle
motion under electroosmotic actuation. In chapter 3, we design the control algo-
rithm to steer the particles along desired trajectories. In chapter 4 we look at a path
planning method to efficiently transport particles between given initial and final po-
sitions. Lastly, in chapter 5, we look at high performance device design to enable
demonstration of five particle steering in experiment. Several researchers have con-
tributed to different aspects of this project. Details about their contributions are

provided in the final section of this chapter.

1.3 Overview of Steering by Feedback Control

Fig. 1.1 shows the basic control idea for steering a single particle: a microflu-
idic device , an optical observation system, and a computer with a control algorithm,
are connected in a feedback loop. The vision system locates the position of the par-
ticle in real time, the computer then compares the current position of the particle
with the desired (user input) particle position, the control algorithm computes the
necessary actuator voltages that will create the electric field, or the fluid flow, that
will carry the particle to its intended location, and these voltages are applied at the
electrodes in the microfluidic device. For example, if the particle is currently north-

west of its desired location, then a south-east flow must be created. The process



repeats at each time instant and forces the particle to follow the desired path.

Both neutral and charged particles can be steered in this way: a neutral par-
ticle is carried along by the flow that is created by electroosmotic forces, and a
charged particle is driven by a combination of electroosmotic and electrophoretic
effects. In either case, it is possible to move a particle at any location in the device,
to the north, east, south , or west by choosing the appropriate voltages at the four
electrodes. It is also possible to use this scheme to hold a particle in place - whenever
the particle deviates from its desired position, the electrodes create a correcting flow
to bring it back to its target location.

Surprisingly, it is also possible to steer multiple particles independently using
this feedback control approach [15] (see also chapter 3). A multi-electrode device
is able to actuate multiple fluid flow modes. Different modes cause particles in
different locations to move in different directions. By judiciously combining these
modes, it is possible to move all particles in the desired directions. The control
algorithm that can combine the modes in this manner is described in detail in chapter
3. The algorithm requires some knowledge of the particle and system properties
but this knowledge does not have to be precise. The reason is that feedback, the
continual comparison between the desired and actual particle positions, serves to
correct for errors and makes the system robust to experimental uncertainties. Even
though our experiments have sources of error, some of which are unavoidable, such
as variations in device geometry, parasitic pressure forces caused by surface tension
at the reservoirs, Brownian noise, and variations in zeta potentials and charges on

the particles - our control algorithm still steers all the particles along their desired



actunl paticle positns

Optical system {40
frames per secomd)

Micro-fluidic device
actuated by electrodes (here
1 oross-chanmel with four
actuators, desired path s o

Nisr [ipmre B} East
[hight clecirodk:

electrole i .
o “{1_5{\'-'"!.'-‘- : | |

Wt ) g
tlm::m:l-:.\ _*
desired particle _1 South
position 5 I;'_
electrode
actual parhicle é
position

1

Heal ity imare processing
and contrtd algorithm
compales the ol tage (o
create fluid oo carry
particles fronm wigre they are
b e they ouchigtc

¢ volieges

Desired
Femrticle

positions

Figure 1.1: Feedback control particle steering approach for a single particle.

microfluidic device with standard electroosmotic actuation is observed by a camera
that informs the control algorithm of the current particle position. The control
algorithm compares the actual position against the desired position and finds the
actuator voltages that will create a flow to steer the particles from the current

location to where it should be. The process repeats continuously until the particles

reach the destination.




trajectories.

1.4 Author’s Contribution to Research within the Larger Team

Several graduate students within Dr. Benjamin Shapiro’s research group have
contributed to this project (Mike Armani, Zach Cummins, and Roland Probst).
This section outlines the contribution made by the author within this larger team.

The concept of microfluidic particle control was first suggested by Dr. Ben-
jamin Shapiro in 2002. Michael Armani and Roland Probst demonstrated the first
particle steering in experiments in 2003 [1] with a simple cross channel device de-
sign. This used a simple control algorithm that created a flow to the North if the
particle was to the South of its desired position (or West if it was East of its desired
position, etc.). With this simple control algorithm it was not possible to steer more
than one particle.

The equations governing electroosmotic actuation are documented in literature
[16], [17] but were applied to the situation of multiple channels feeding into a planar
control region by the author. The author created models of the electric field, fluid
dynamics, and resulting particle motion under control within the devices. He further
developed a simulation environment to develop and test strategies for control of
multiple particles. The multi-particle control algorithms that the author designed,
mathematically developed, analyzed, and validated in simulations, were then further
adapted to the experiment by Roland Probst. Probst experimentally demonstrated

three particle steering in 2005. At this stage, Zach Cummins became involved in



the project and during his overlap with the author, Cummins improved the vision
system and created a Matlab graphical user interface for operating the setup. At
this stage, at the end of 2005, through the control theory development efforts of the
author and Roland’s contributions, we were able to control up to three particles.
Both the author and Roland Probst led a thorough investigation into the
factors that prevented steering of more than three particles in experiments. To
this end, the author proved that the maximum particle actuation speed dropped
rapidly with increase in the number of particles, and for more than three particles
the actuation was no longer sufficient to overcome the parasitic pressure flow. To
address this issue, the author redesigned the devices to enhance particle actuation
by a factor of more than five. The author, Cummins, and Probst then used these
high performance devices to demonstrate steering of five particles in an experiment.
To demonstrate steering of multiple particles it was also imperative to carefully
design the paths. Improperly designed paths would lead to actuator saturation
and subsequent loss of control. Probst and the author both worked on developing
optimal path planning methods (2007) and eventually, and independently, achieved
two different but complementary approaches. This thesis includes the research on

optimal path planning carried out by the author.



Chapter 2

Governing Equations

This chapter provides equations relevant to modeling the microfluidic device
in consideration. The first section of this chapter describes the physics of electroos-
mosis. The second section provides equations governing fluid motion. The third
section provides equations governing motion of microparticles in the microfluidic

device.

2.1 Physics of Electroosmosis

When a potential difference is applied across the two ends of a glass micro-
capillary filled with an aqueous buffer as shown in Fig. 2.1, the fluid inside it moves
in the direction of the electric field. This phenomenon is called electroosmosis. Elec-
troosmosis provides a very effective method of transporting fluid at the microscale
using electricity.

The mechanism of fluid transport through electroosmosis is as follows. Glass
surfaces acquire a negative surface charge when brought in contact with an elec-
trolyte (aqueous buffer solution). Chemists widely believe that this spontaneous
charging of glass surfaces is due to the deprotonation of surface groups (SiOH) on

the surface of glass [17]. The equilibrium reaction associated with this deprotonation



glass microtube
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cross section view of a thin glass tube
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Figure 2.1: This diagram illustrates the transport of fluid in a glass microcapillary
due to electroosmosis. When a potential difference is applied across a glass micro-
capillary filled with an aqueous buffer, fluid moves in the direction of the electric

field. This movement of fluid is called electroosmosis.
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can be represented as

SiOH = SiO~ + H* (2.1)

Models describing this reaction have been proposed for several types of glass [18§],
[19], [20].

The negatively charged surface attracts positive ions in the electrolyte towards
it. This electrostatic attraction combined with the random thermal motion of the
ions gives rise to an electric double layer close to the glass surface. The electrical
double layer is a region close to the charged surface where there is an excess of
positive ions over negative ions to neutralize the surface charge. Fig. 2.2 shows a
schematic of the electrical double layer [17], [21]. We may observe that if there were
no thermal motion, there would be exactly as many positive ions in the electrical
double layer as needed to balance the charge on the surface. However, because of
the finite temperature and associated random thermal motion of the ions, those
ions at the edge of the electric double layer where the electric field is weak, have
enough thermal energy to escape from the electrostatic potential well. Therefore
the edge of the double layer is considered to be at a position where the electrostatic
potential energy is approximately equal to the average thermal energy of the positive
ions (RT/2 per mole per degree of freedom). For the simple case of a symmetric
electrolyte with two monovalent ions, the characteristic thickness of the electric

double layer A\p is given by [22]

kT \ 2
= (552) - (2:2)

where € is the permittivity of the liquid, £ is the Boltzman constant, 7" is the

11
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——————— through viscous forces, causing
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Figure 2.2: Mechanism of electroosmotic actuation. The three steps in the mech-
anism are illustrated - formation of surface charge on glass, the formation of an
electrical double layer to neutralize the surface charge, and movement of the elec-

trical double layer under influence of an external electric field.
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temperature, F' is Faraday’s constant, and ¢ is the molar concentration of each
of the two ion species in the bulk. At typical biochemical, singly ionized buffer
concentrations of 10 mM and room temperature of 298 K | the electric double layer
is of the order of 10 nm thick.

When an electric field is applied tangential to the glass surface, the ions in the
diffuse electric double layer experience a electrostatic body force and move in the
direction of the electric field. This moving layer of ions in the electrical double layer
exerts a force on the bulk fluid via viscous drag resulting in a bulk flow of fluid in
the direction of the electric field. This is the mechanism of electroosmotic actuation.

In addition, it is important to note that the bulk fluid is electrically neutral
(i.e. it contains equal number of positive and negative ions), and even though these
ions move under the influence of the electric field, the viscous drag created by these

ions cancel each other with a net zero contribution to the bulk flow.

2.2 Equations Governing Fluid Motion

This section provides the equations governing fluid motion in the microfluidic
device. Section 2.2.1 provides the full coupled Navier-Stokes and Gauss equations
governing fluid flow. Section 2.2.2 provides a simplification of the governing equa-
tions through the use of dimensional analysis techniques. In section 2.2.3, the fluid
flow solution is expressed as a superposition of electroosmotic and pressure-driven
flow components. Section 2.2.4 provides the solution to the electroosmotic flow com-

ponent. Section 2.2.5 provides a solution to the pressure-driven flow component.

13



2.2.1 Full coupled Navier-Stokes and Gauss equations

We start by considering the Knudsen number (K,,) of the device, which pro-
vides a measure of accuracy of the continuum hypothesis for a fluid system [23]. For

our case, the Knudsen number is

)\water . 3 X 10_10 m .
h 10x10%m

K, = 3x107°, (2.3)

where A, gz is the mean free path of water molecules at standard temperature and
pressure; and h is the channel height of the device. Since the Knudsen number is
less than 1072, the flow is within the continuum regime [23].

Since the flow is a continuum, the Navier-Stokes equations are applicable.
Because we are modeling the flow of water, incompressibility and Newtonian fluid
assumptions may be used [24]. Hence, the equations governing fluid motion are
given by

V-V =0 (2.4)

and

a‘_/) — — 9T
P ﬁJrV-VV =-—Vp+uV-v, (2.5)
where V = (u,v,w) is the three dimensional fluid velocity, p is the pressure, p is
the dynamic viscosity, p is the fluid density, 0t denotes the partial derivative with
respect to time, V is the gradient operator, and V - () is the divergence operator.

Since the electrical double layer thickness (10 nm) is very small compared to

the channel dimensions, we can state the wall boundary conditions in terms of the

14



velocity slip condition (Helmoltz-Smoluchowski equation) [16], [25], [26] as

‘_/)u)all - _%E) (26)

where 1_/)%” represents the fluid velocity at the wall, E = (E,, By, E.) is the electric
field, € is the permittivity of the fluid, and ( is the zeta potential at the wall. The

pressure boundary condition at the inlets is given by the equation
p(0D;) = P, (2.7)

where dD; denotes the surface corresponding to i*" inlet, and P, denotes the pressure
at the i'" inlet.

The equations governing electric fields are given by Gauss’s law [26]:
—eV2p =0 (2.8)

and
ﬁ
E =-Vo, (2.9)
where ¢ is the electric potential. The corresponding boundary conditions - insulation
at the walls and voltage potential at the inlets are given by
7 E e = 0 (2.10)
and
P(0D;) =, (2.11)

where 7 denotes the normal vector to the surface, E)wa” is the electric field at the

wall, and 7, is the electric potential at the i*" inlet.
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2.2.2  Simplification of Fluid Flow Equations at the Microscale

At the microscale, and at our operating conditions, these equations reduce to a
set of simple linear PDEs [16]. In order to obtain these simplified equations, we first
normalize equations (2.5) and (2.4) using the non-dimensionalization of variables

shown below:

T = g, (2.12)

P t—i (2.13)

— V

Vo= R (2.14)
and

o) (2.2

where 7 is the position vector, d = 20 x 107% m is the hydraulic diameter for the
channel (for non-circular channels, hydraulic diameter is given by four times the
cross sectional area divided by the cross-sectional perimeter). We chose the cross
section to have rectangular width of 100 x 10~ m and depth of 25x 1075 m) , . = 1s
is the characteristic time scale (e.g., for an applied forcing function), V, = 10 x 10~°

ms~! is the characteristic electroosmotic velocity magnitude, ;4 = 1073 Nsm~2 is

lis the characteristic electric field strength

the dynamic viscosity, £. = 5000 Vm™
(this value was chosen as a potential difference of 20V is applied across 4 mm), and
€ = 80.2 x 8.854 x 10712 CN~'m~2 permittivity of the fluid. We then compare the

order of magnitude of each term in the equation, and finally discard the terms of

extremely small magnitude.
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Substituting equations (2.12)-(2.15) in (2.5) and (2.4), the normalized equa-
tions of fluid flow are given by

V-Vr=0 (2.16)

and

*

ov — — 02
St Re +ReV*-VV* = -V*p" + V=V (2.17)

ot
where the V and V? operators are non-dimensionalized using d. St and Re are the

Strouhal and Reynolds numbers respectively, and are defined as

d
_ 2.18
St = (2.18)
and
Re = p‘ih. (2.19)

The Strouhal number is a measure of the unsteadiness of the flow and the Reynolds

number gives the ratio of inertial and viscous forces in the fluid flow. In our case,

St=2 (2.20)

and

Re=2x 107" (2.21)

Hence, we see that, the terms on the left-hand side are extremely small in magnitude

and can be ignored. The normalized equations of fluid motion then become

V-V =0 (2.22)

and

17



0=—V'p* + V2V~ (2.23)
Using (2.12)-(2.15), and transforming (2.22) and (2.23) back to the dimensional
form, the equations governing fluid motion are given by
ﬁ
V-V =0 (2.24)
and
—Vp + uV2V = 0. (2.25)

The boundary conditions are given by equations (2.6) and (2.7).

2.2.3 Solution of Equation as a Superposition of Electroosmotic and
Pressure Flows

Due to the linear nature of equations (2.24) and (2.25), their solution can
be expressed as a linear superposition of the electroosmotic and pressure driven

components [17]:

— —

SN
V=Vio+V,. (2.26)

The rationale behind the decomposition of the velocity field is as follows: If v EO

satisfies

V- Vio=0 (2.27)
and

U2V po =0 (2.28)

18



with boundary conditions

— e —
V Eowan = —;E, (2.29)

(these correspond the equations of fluid flow due to electroosmosis in the absence
of externally applied or internally generated pressure gradients, which are obtained

by setting Vp = 0 in (2.24) and (2.25)), and 1_/),, satisfies

N

V-V,=0 (2.30)
and

N
—Vp+uV?V,=0 (2.31)

with boundary conditions

N

V pwair =0 (2.32)
and

p(OD;) = P (2.33)

(these correspond to equations of fluid motion due to pressure driven flow in the
absence of an electrical double layer), then, adding (2.27) and (2.30); (2.28) and
(2.31); and boundary conditions (2.29), (2.32) and (2.33); and substituting V =

— — — .
Vgo + V,, we get that V' satisfies

_

V-V =0 (2.34)
and

2—)
—Vp+uVV = (2.35)

with boundary conditions

_

Vu)all =0 (236)
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and

p(0D;) = P, (2.37)

2.2.4 Solution for Electroosmotic Flow

Equations governing electroosmotic flow are given by (2.27) and (2.28) with
boundary conditions (2.43). We hypothesize that a solution of the equation is of
the form [16]

— —
Veo=cFE, (2.38)

where ¢y is an undetermined constant, and E is the electric field. The rationale
behind this hypothesis is the following: The electric field satisfies both, the Faraday

and Gauss’ laws, which are given by

V.-E=0 (2.39)
and
VxE =0. (2.40)

From equation (2.39), we have, 1_/);30 = COE) directly satisfies equation (2.27). To

prove that v EO = COE) satisfies equation (2.28), we use a well known vector identity
V2V 5o = V(V- Vo) — VX V x Vo (2.41)

From equations (2.41), (2.39), and (2.40), we have that 1_/);30 = COE) satisfies (2.28).

We choose

_«
I

co = (2.42)
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to ensure that the hypothesized solution v EO = COE) satisfies the boundary condi-
tion (2.29) as well. The fluid flow velocity due to electroosmosis, in the bulk flow

region bounded by the slip surfaces, is therefore given by

Vo = —6—53 (2.43)

Since the solution of the Laplace equation with fixed boundary conditions is unique
[27], and PDE (2.28) is a Laplace equation, we can be sure that (2.43) is the only
solution for the electroosmotic flow in the bulk flow region.

Note that the electroosmotic flow is directly proportional to the electric field
and responds instantly to it (because the Reynolds number is so small). Also, it
has a plug flow profile in the dimension perpendicular to the flow. Fig. 2.3 provides
an example of an electroosmotic flow solution. The electric field E is computed by
first solving the Gauss equations (2.8) and (2.9) with boundary conditions (2.11)
and (2.10). We solved these equations using COMSOL, a commercially available

numerical PDE solver.

2.2.5  Solution for Pressure-Driven Flow

Equations governing pressure driven flow (also known as Stokes flow) are given
by (2.30) and (2.31) with boundary conditions (2.32) and (2.7). We solved these
equations using COMSOL, a commercially available numerical PDE solver. Fig. 2.3

provides an example of a pressure driven flow solution.
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Figure 2.3: Sample solutions for electroosmotic and pressure-driven flows respec-
tively. The electroosmotic flow is directly proportional to the electric field and has a

plug flow profile in the cross sectional view. The pressure-driven flow has a parabolic

profile in the cross sectional view.
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2.3 Equations Governing Particle Motion

In this section, we shall obtain equations governing motion of microparticles
in the microfluidic device. Their motion is a vector sum of four components: motion
due to electroosmotic flow, pressure-driven flow, electrophoretic forces, and Brown-
ian motion. Section 2.2.3 provides a mathematical expression for the components
of particle motion due to electroosmosis and pressure-driven flow. Section 2.3.2 and
2.3.3 provide a mathematical expression for the components of particle motion due
to electrophoresis and Brownian motion. Section 2.3.4 provides the equation gov-
erning net particle motion. Finally, in Section 2.3.5 we express the particle velocities

in terms of input voltage vectors.

2.3.1 Particle Motion due to Electroosmotic and Pressure flows

As seen in previous sections, the net fluid flow in the device is given by the
superposition of electroosmotic and pressure flows. If the particles are neutral,
we can assume that they flow perfectly along with the fluid at all times. This
assumption can be justified as follows: Consider a spherical particle of radius a, in
the fluid. When the fluid flows at velocity Vj relative to the particle, the particle
experiences a drag force Fy, which can be calculated by the classical Stokes drag
law [26]:

Fy = 6mpa,Vy. (2.44)
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The motion of the particle as it accelerates due to F,; can be modeled by Newton’s
second law:

mCZ = 6mpay(Vo — v), (2.45)

where m is the mass of the particle, v is the velocity of the particle at any given
instant, and Vj—uv is the relative velocity of the fluid with respect to the particle. The
time tg;, required for the particle to accelerate to velocity 0.999V, can be determined
by rearranging equation (2.45) and integrating both the variable ¢ between limits 0

to tg; and the variable v between limits 0 to 0.999Vj:

0999V g 6 tse
v TGy,
= dt 2.46
I (240
0 0
solving which, we get
m 1
ts = 1 : 247
St 67r,uapn(0.001) (247)

For a particle of radius a, = 1 x 107% m (reflecting the size of polystyrene beads
used in our experiments) and assuming its density to be approximately equal to
that of water, p ~ 10% kg m—3, we have tg, ~ 107% s. Since the characteristic time
scale in our experiments is seconds, for all practical purposes we can assume that
the particles move along with the fluid.

Hence the component of the microparticle motion due to electroosmosis 7) pocan

be expressed as

P ro = —%ﬁ(?) (2.48)

and the component of the motion due to pressure driven flow 7°,can be ex-
pressed as

7=V, () (2.49)



where 7 is the position vector of the particle.

2.3.2 Particle Motion due to Electrophoresis

If the particles are charged, (polystyrene beads may acquire a surface charge
in water [26], [22]) they experience an electrophoretic drift velocity with respect to

the fluid on application of an electric field. This drift velocity is given by
Ty =cE(T), (2.50)

where ¢ is the particle’s electrophoretic mobility.

2.3.3 Particle Motion due to Brownian Motion

In addition to the previously discussed contributions to motion, the particles
also exhibit a random walk or Brownian motion due to collisions with fluid molecules.

The particle velocity is modeled as [26], [28],

= | KT
=4/ —w(0,1 2.51
B 37r,uapdt w ( ) )> ( )

where W (0,1) is a 2 by 1 vector whose elements are Gaussian random variables with
zero mean and a variance of one, and dt is the time interval over which the particle

displacement is measured. Note that the average particle displacement in time dt

ETdt
op =4/ ~ 150 nm (2.52)
3T pay,

is a very small number compared to particle diameter (2.5 microns). For calculation

given by

purposes, here we chose dt = 0.05 s because the control voltages are updated 20
times every second in experiments.
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2.3.4 Equations for Net Particle Motion

From equations (2.48), (2.49), (2.50), and (2.51) the net particle velocity is
given by

— €= — - — 7 = kKT
=——F 1) _—
P =SB+ BT+ T+ e

W (0,1). (2.53)
The particle motion due to electroosmosis and electrophoresis is in the direction
of the electric field and can be combined together. The particle motion due to

pressure flow and Brownian motion cannot be controlled and hence we consider

them as uncertainty terms. The net particle velocity equation is therefore given by

7 = (—% + c) E(7)+56 (2.54)

where 0 denotes the uncertainty due to Brownian motion and pressure flow.

2.3.5 Governing Equations for a System of Particles in Terms of In-

put Voltages

In order to obtain the equations governing motion for a system of particles,
in terms of input voltage, consider a microfluidic device with n inlets, with voltages
Y15 Vas s Vn, applied to the n electrodes, and say we wish to obtain governing equa-
tions for a system of m particles at position vectors 71, 72, .., T m. From equation

(2.54) the equations governing nominal particle motion for the m particles are given

26



7)1 = (—% + C) E')(?l)
7)2 = (—6—5 + C) E')(?Q)

(2.55)

T = (=% +¢) E(7m)

Since electric fields are superposable, E can be expressed as a linear combination of
n modes, where the i mode is defined as the electric field generated when the 7
electrode is set to 1V and the rest are set to 0V i.e. 7, = 1V and v, = 0 (Vj # ).

This is expressed as

71
E(7) = {E}(?) EAT) . ﬁn(?)} . (2.56)

Tn

T T
Now, since voltage vectors {% Yy .. %] and {%4_@ Yoo . o, +a

would produce the exact same electric field, it is always possible to adjust the
voltages such that v, = 0, or we say that 7, is set to ground. Hence, any possible
electric field is can be expressed as a linear combination of only n — 1 modes. This

is expressed by

Y1

E(T) = B (T) Ba(F) .. Bur(T) L (2.57)

Tn-1
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Substituting equation (2.57) in (2.55) we have the equations governing motion of a

system of particles:

i — — —
?)1 El(?l) EQ(?l) .. En—l(?l) ’}/1
: — — —
G eC El(?2) E2(?2) - En—l(?Q) Yo
:(———I—C) . (2.58)
W
T Ev(Tw) Ea(Tm) « Eaca(Tw)| |0

which can be expressed more concisely as

7 = A(F)7, (2.59)
where _ _
—
1
_
— "2
T = , (2.60)
—
T m
— — —
E(7) Eo(7) E,. (7))
— — —
El(?g) EQ(?Q) . En_l(?g)
A(T) = (—g + c) , (2.61)
H . . . .
— — —
El(?m) E2(?m) En—l(?m)
and _ -
71
N
7= "1 (2.62)
/yn—l
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Chapter 3

Controller Design

In this chapter, we look at the design of control logic to steer particles along
desired trajectories. Section 3.1 provides the derivation of the feedback control law
for the nominal system. Section 3.2 analyzes degradation of tracking performance
of the controller in the presence of system uncertainties. Section 3.3 presents some
simulation results and section 3.4 provides explanations for addressing important

questions about loss of control in certain situations.

3.1 Designing a Controller for the Nominal System

Fig. 3.1 shows the basic components for multiple particle control: the mi-
crofluidic device, a camera, and a computer with a control algorithm are connected
in a feedback loop. The camera registers the position of the particles in real time,
the computer compares the current position of the particles with the desired particle
position, and the control algorithm then computes the necessary actuator voltages
that will create the fluid flow to carry the particles to their desired position. These
voltages are immediately applied at the electrodes in the microfluidic device. This
process is repeated 20 times every second. The following theorem gives the feedback

control law for the nominal system.
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Figure 3.1: Block diagram for the feedback control of multiple particles in the
microfluidic device.

Theorem 1 Consider a set of particles, whose motion is described by the system

T = A(T)7, (3.1)
with given initial condition
7(0) = T, (3.2)
T
where 7 = T, T .. 7, | € D1 isthevector of particle positions, Dy C R2™

is a domain covering the control area of the device, & € R" Yis the control voltage
vector, A : Dy — R¥™*(=1) js q smooth function on domain Dy, m is the number
of particles and n is the number of electrodes. The desired particle trajectory is T q

where T 4 € Dy. Then, the feedback control law
F = AT (Ta— k), (33)
where A*(77) is the pseudo-inverse of matriv A(7) and follows the relation [29]

AHT) = AT(T)(A(T)AT ()7 (3-4)

e =T — T4 is the tracking error, and k is the controller gain, ensures that the

tracking error € exponentially decays to zero with time.
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Proof. Applying the feedback law (3.3) to the system (3.1) the closed loop

dynamics are described as
T = A(T)AH(T)(Tq— k),

Substituting equation (3.4) in equation (3.5) we have

- T = ?d — /{7?,
which simplifies to
¢ =-k¥€

(3.9)

Hence the feedback control law (3.3) ensures that the tracking error exponen-

tially decays to zero with time.

Note: The pseudo-inverse of a fat matrix A is defined by [29]

AF = AT(AAT)

(3.10)

inverts the non-invertible matrix A as best as possible and has the following prop-

erties:

e The least norm solution of the linear system y = Az is given by z = A¥y.

o AAT=1.
The feedback control law

7 = AT (T~ k),

(3.11)
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desired particle
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Figure 3.2: The desired and actual particle positions are denoted by the black hollow
and solid circles, respectively. The various vectors denoting desired particle velocity
and error are as indicated. The controller creates a particle velocity of 74 — ke,

which, as we can see, pushes the particle towards the desired trajectory.

can be interpreted as producing 7', the most efficient solution (least norm solution)
from a set of all possible voltages that will move particles at position 7 with velocity
(7"g — k€). As seen from the Fig. 3.2, this makes intuitive sense, as this pushes

the particles towards the desired trajectory.

3.2 Degradation in Controller Performance due to System Uncertain-
ties
The previous section provided a feedback control law for the nominal system.
In reality, however, there are several sources that introduce uncertainty in particle

velocities and affect tracking performance. Electrophoresis, Brownian motion, and

pressure driven flow (as pointed out in the final section of chapter 2) all contribute
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to uncertainty in particle motion. In addition, distortions in device geometry due
to fabrication tolerances and uncertainties in zeta potential value also contribute to
distortion of the nominal flow field. In our model, we assume that the polystyrene
beads move along with the flow, but in experiments, we often observed that the
particles encounter friction with the top and the bottom channel surfaces. The
following theorem provides a numerical bounds and convergence rate for the tracking

error in the presence of such uncertainties.

Theorem 2 Consider the system described by
7= [A(T) + 0 (7L O] (t) + 0a(7, 1) (3.12)

with given initial condition

7(0) = 7o, (3.13)

where T € Dy is the vector of particle positions,Dy; C R*™ is a domain such
that 7 ; € Daevice (Dgevice 18 the domain covering the control area of the device),
~ € R is the control voltage vector, A : Dy — R>™*(=1) js 4 smooth
function on domain Dy, m s the number of particles, n is the number of
electrodes, 011s the deviation of the real map from the nominal map A due to
distortions in device geometry and uncertainties in zeta potential value, 5_2) 18

the vector of parasitic pressure, electrophoretic, Brownian motion, and friction

velocities that are superposed on top of the electroosmotic particle velocities.

(a) Then the feedback control law

7 = AT Fa—k?) (3.14)



ensures that the norm of the tracking error || €|, is ultimately bound by
A/ Ak min where

—

5 (6,7, 7) = 6,(T, ) AN )T o+ 6o( T, 1), (3.15)
K =k(1+6,(7,t)AY7)), (3.16)
H?(t,?ﬁ) < (3.17)

and K is positive definite with its smallest eigenvalue given by i min-

(b) Further the convergence of ||€ ||, is bounded by an exponentially decaying func-

tion such that

e’ @, < (Fe’ ()1, — ) exp(—kt) + (3.18)
)\Kmin )\Kmin
vt > 0.
Proof.
(a) Consider the system
T = [A(T) + 6T, 017 (1) + 6 2(T, 1), (3.19)

applying the feedback control law (8.14) the closed loop dynamics are given by

—

T = AT A (TN Tu—kT) + 0 (1,7, 7), (3.20)
which simplifies to
T =-Ke+0(tLT.7). (3.21)
Considering the Lyapunov function candidate
V= %?T? (3.22)



for the system (3.21) and taking its time derivative we have
V=277, (3.23)
Substituting equation (3.21) in equation (3.23) we have

t,7,7)), (3.24)

—V="7TKe+ et 7,7, (3.25)
’ — 12 — Y, = =
=V < Dxkmn [ €l + € || 67, 7) ,’ (3.26)
=V < Again [T+ [Ely A, (3.27)
=V <0 VHeH2>>\—. (3.28)
K min

Hence ||€||, is ultimately bound by A,/ A min-

(b) To obtain an estimate on the convergence of || € ||, , we first consider the rate of

decay of the Lyapunov function

’ d VAN
=== 2
%4 dt(2 ete) (3.29)
’ d 1, _, 09
— V= %(5 [zaly (3.30)
—= V=€, (3.31)

Comparing equations (3.27) and (3.31) we have
: 2
1€, 1€y < =Axmin €15 + 1€ A (3.32)
= [I€lly < =Amin €]l + Am. (3.33)

The solution of which yields [30]

A, AN
) €Xp(—AK mint) +

H?(t)HQ < (H?(O)H2 - \ .
K min K min

(3.34)
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Figure 3.3: The particle tracking error norm (blue curve) in the presence of sys-
tem uncertainties is bounded between the exponentially decaying curve (marked in

black). The ultimate bound is given by A,,/Ak min-

Fig. (3.3) illustrates that the error norm is bound by the exponentially decay-

ing function given by equation (3.34).

3.3 Simulation Results

This section presents COMSOL/MATLAB simulation results for the control

of one, two, and three particles. To simulate experimental conditions we considered:

e A twelve channel device geometry, similar to that used in experiments. Incom-
ing radial channels were 25 microns wide, 10 microns deep, and the central

control area was about 125 microns in diameter
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A mild parasitic pressure driven flow with a magnitude of around 10 microns/s

at particle positions

A 10% uncertainty in the estimation of zeta potential

Minor distortions in the device geometry of 45 microns at arbitrary locations

e Brownian noise with an average particle displacement of 0.15 microns per

control voltage update time step

Control voltage was updated 20 times a second

3.4 Explaining Two Important Observations

We could only apply voltages in the range +10V to —10V to the electrodes.
Higher voltages led to electrochemical reactions at the electrodes, disturbing the
control and complicating the physics of the problem. Overall, we encountered two

effects that put serious limits on the steering capability of the device.

1. As particles came close to each other, the voltages computed by the controller

rose sharply, saturating the actuators, making control impossible.

2. As the number of particles to be steered was increased, the maximum speed
at which the particles could be steered dropped drastically. The drop was
so dramatic, that when attempting to steer more than three particles, the
electroosmotic flow was insufficient to overcome even the mildest parasitic
pressure-driven flows that existed in the device at all times - leading to loss of
control.
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Figure 3.4: This figure shows a single particle steering simulation results for a twelve
channel microfluidic device. The thick green lines indicate the desired particle tra-
jectory. The thin black lines indicate the actual particle trajectory. A mild parasitic
pressure flow, distortions in device geometry, uncertainty in estimation on zeta po-

tential values, and Brownian motion are considered in the simulation.
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Figure 3.5: This figure shows a two-particle steering simulation results for a twelve
channel microfluidic device. The thick green lines indicate the desired particle tra-
jectory. The thin black lines indicate the actual particle trajectory. A mild parasitic
pressure flow, distortions in device geometry, uncertainty in estimation on zeta po-

tential values, and Brownian motion are considered in the simulation.
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Figure 3.6: This figure shows a three-particle steering simulation results for a twelve
channel microfluidic device. The thick green lines indicate the desired particle tra-
jectory. The thin black lines indicate the actual particle trajectory. A mild parasitic
pressure flow, distortions in device geometry, uncertainty in estimation on zeta po-

tential values, and Brownian motion are considered in the simulation.
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As a result, initially we could only demonstrate steering of up to three parti-
cles. Additionally, we had to ensure that no two particles came very close to each
other at any time during the particle steering process. Manually designing such
paths was extremely tedious. In order to achieve our objective of demonstrating
steering of up to 5 particles, it was necessary to first understand the reasons for
this system behavior and then identify ways of avoiding or changing this behavior.
In this section, we explain the cause. In chapters 4 and 5 we elaborate on ways of
avoiding/changing this behavior.

In the first subsection, we will express the voltage vector in terms of the
singular values of the A matrix. In the second and third subsection, we will use
this expression and an understanding of the change in the singular values of A in
response to changes in particle configurations and to changes in particle numbers to

explain the two observations mentioned earlier.

3.4.1 Expressing the Controller Voltage in Terms of the Singular Val-

ues of Matrix A

Consider a set of particles at positions 7)9 and say we wish to actuate the
particles with velocities 7 . The equations governing particle motion are then given

by the linear equation

Tp=A(T,)7. (3.35)

This equation is now expressed in terms of its standard basis. Without loss of

generality, it can also be expressed in terms of its singular value basis. The singular
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value basis is obtained by considering the SVD decomposition of the matrix A, =

A(7,) as shown.

or 0 0 0 wT
. 0 o 0 0 :
Ay =QSWT = |2, Ty . Tus . (3.36)
0 0 ° 0

0 0 0 o, |WL,

The input and output basis vectors for the standard and singular value basis is

shown in the table below.
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Standard basis

Singular Value basis

(particle vector)

Agpy is i" column of A,

1 0 0
Normalized
0 1 0
. — — —
Input vectors ) R Wi, W2,y Wp—1
(voltage)
0 0 1
: 1 1
Normalized A Agi, Al Ago, ..
- — —
output vectors (n — 1 vectors) 91, 4255 §n-1

Relation between
input & output

vectors

0

Here the input vector has a 1

at the i'" position

— —
Agwi:UiQi

(see Appendix A)

When expressed in terms of the standard basis, we can physically interpret

43

the equation (3.35) as: The desired particle velocities can be obtained by linearly
combining n—1 fluid modes, as shown in the upper half of Fig. 3.7. When expressed
in terms of the singular value basis, the equation (3.35) can be physically interpreted
as: The desired particle velocities can be obtained by linearly combining n—1 singular

value fluid modes, as shown in the upper half of Fig. 3.7. The i*" singular value




fluid mode is obtained by applying the voltage vector w; to the electrodes.
The controller voltage

3 = AT(4,AT) T (3.37)

which also corresponds to the least norm solution to equation (3.35), is obtained by
linearly combining only the first 2m singular value fluid modes ( Refer to subsection
(3.4.4) for a rigorous mathematical proof.). Let ¢y, ¢y, ..., co,, be the components of

the voltage vector ¥ along the singular value input basis. Therefore,
7 = Clwl + CQE)Q + ...+ Cgmwgm. (338)

Let a1, as, ..., asm be the components of the particle velocity vector 7 p along the

singular value output basis. Therefore,
R
Tp=a1q1 + az(q> + ...+ a2mqom - (339)

Substituting (3.38) and (3.39) in (3.35) and using the identity A,w; = 0,7¢;, we
get
Z a;q; = Zciai%- (3.40)

Comparing coefficients of ¢; we have

a;

0
Substituting (3.41) in (3.38) we get
T =T+ Byt + 2, (3.42)
01 09 O2m

In general we expect a; to be of the same order of magnitude O(a), hence

O
7 ~ 2 (wl + Wy ﬂmm) . (3.43)
01 02 2m
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Figure 3.7: Desired particle velocities can be obtained by linearly combining n — 1
fluid modes, as shown in the upper half of the figure. Without loss of generality, the
particle velocities can also be obtained by linearly combining the n— 1 singular value
modes, as shown in the lower half of the figure. The least norm voltage solution to
obtain the desired particle velocities is acquired by linearly combining only the first

2m singular value modes.
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In the following subsections we will use this expression to explain the two observa-

tions mentioned earlier.

3.4.2 Explaining Sharp Rise in Control Voltage when Particles Ap-

proach Each Other

Two scenarios are shown in Fig. 3.8: one is for two particles that are further
away from each other and the other is for particles closer to each other. The A,
matrix corresponding to each scenario is shown on the right. The reader will recall
that the rows of the A matrix are such that the first and third rows represent the x
velocity component of the first and second particle respectively for all fluid modes
1 = 1,2,..n. The second and fourth rows represent the y velocity component of
the first and second particles respectively for fluid modes i = 1, 2,..n. For the first
scenario the four rows in general would represent four linearly independent vectors.
As the particles come closer to each other as shown in the second scenario, the first
row becomes similar to the third row and the second row becomes similar to the
fourth row. Consequently, the A, matrix tends towards having only two linearly
independent rows. In terms of singular values, this means that as the two particles
come closer to each other, the last two singular values progressively tend to zero.

Therefore 01 /03 — 0o and 01/04 — 00, consequently the voltage expression

O
> ~ 90) (wl L D, Dy ﬂm) oo (3.44)
o1 o2 03 04

saturating the actuators and leading to loss of control capability. This reflects a
fundamental property of the system: two particles close together see a similar fluid
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flow and steering them apart is difficult.

3.4.3 Explaining the Rapid Decrease in Maximum Particle Steering
Speed as the Number of Particles Increases

Fig. 3.9 shows, for a typical case, the maximum particle steering speed and
singular values of the A, matrix as the number of particles increase. We see that
the smallest singular value drops rapidly with increase in the number of particles.

Consequently, the terms oy /0; towards the extreme right in the voltage expression

— _ O(a)

01

E)Qm—l + 0-1@)2171) (345)

O02m—1 02m

01

o

(E)l + —1@)2 + ...+
02

rapidly rise in magnitude. Conversely, given a limit of 210V on each electrode the

maximum particle steering speed falls rapidly as the number of particles increases.
As shown in Fig. 3.9, the maximum electroosmotic particle actuation speed for four
and five particles is much lower than the mild parasitic pressure flow that always

exists in the device, and hence we were unable to steer more than three particles.

3.4.4 Rigorous Mathematical Treatment for the Physical Interpreta-
tion of Controller

In subsection (3.4.1) we had used the fact that the least norm solution to the
system equation

Tp=A,7 (3.46)
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Figure 3.8: Scenario 1 represents a situat