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This article describes the equilibrium shape of a liquid drop under applied fields such as gravity and
electrical fields, taking into account material properties such as dielectric constants, resistivities, and
surface tension coefficients. The analysis is based on an energy minimization framework. A rigorous
and exact link is provided between the energy function corresponding to any given physical
phenomena, and the resulting shape and size dependent force term in Young's equation. In
particular, the framework shows that a physical effect, such as capacitive energy storage in the
liquid, will lead to 1R “line-tension”-type terms if and only if the energy of the effect is
proportional to the radius of the liquid drog=R. The effect of applied electric fields on shape
change is analyzed. It is shown that a dielectric solid and a perfectly conducting liquid are all that
is needed to exactly recover the Young—Lippmann equation. A dielectric liquid on a conducting
solid gives rise to line tension terms. Finally, a slightly resistive liquid on top of a dielectric, highly
resistive solid gives rise to contact angle saturation and accurately matches the experimental data
that we observe in our electro-wetting-on-dielectric devices. 2@3 American Institute of
Physics. [DOI: 10.1063/1.1563828

I. INTRODUCTION tron transfer and to provide a hydrophobic surface that en-
ables large changes in contact angle. This electro-wetting-on-
The shape of a liquid drop on a surface is determined byjielectric (EWOD) driven actuation has been used to create
the composition of the liquidsolvent, and ionic and surfac- droplets from reservoirs, as well as to cut, join, and mix
tant solutesand by the composition and morphology of the drops on planar surfaces or in channi8 Applications of
underlying solid. When an electric potential is applied acrosgwoD include microfluidics and biofluidic sensors and de-
the liquid drop and the solid substrate, ions and dipoles reyjces.
distribute in the liquid, in the solid, or in both depending on |n order to design and control such devices, we required
the relative material properties. This redistribution can causgccurate models of the underlying physics. First, we need
a hydrophobic surface to behave in a hydrophyllic mannersome way of deciding which physical mechanisms are domi-
In such a case, the liquid drop will change shape under thgant in the devices: is the ionic double-layer more or less

applied electric potential. important then the dielectric energy stored in the liquid?

_ This ellegtro-wettiljg phenomenon can be used to creal@nat nercent of the energy is being stored/dissipated in the
fluid flow. ~~="In practice, electro-wetting-based actuation of

\uti i limi h ¢ f| liquid bulk, solid bulk, and at the interfaces? Second, we
aqueous solutions is limited by the onset of current Wheed to understand the engineering limits: why does contact

throug_h th_e substrate and_ the solution, which leads to Cher_n!‘:ingle saturate? What limits droplet switching speed? This
cal oxidation, t.he reduction of solutes, and to eleCtmeS'Sarticle addresses some of these needs.
(bubble formation It has recently been demonstrated that

fluid actuation can be achieved without electrolysis by coatA. Background

ing the conductor or semiconductor substrate with a

: 13610 ) - Prior modeling results are based on the classical work by
dielectric:">*"The dielectric serves both to block the elec- Lip

pmann 1! and Young (see, for example, Chap. 10 in
Probsteif?). More recent articles include Refs. 1,7,10,13—

dAuthor to whom correspondence should be addressed; electronic maig5' In part|CU|a:r" the_tOtgl ?nergy mm'm'z_at|on Tramework
benshap@eng.umd.edu; http://www.glue.umd edestshap/ proposed by Digilo% is similar to our starting point. How-
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ever, our method of analysis and physical interpretation i®lectric fields, and thus the stored energies, inside the solid
different; plus, we go on to numerically solve the surface-and liquid materials. Moreover, we have been able to derive
energy/electrostatic minimum energy conditions and wea rigorous equation which takes any arbitrary energy term
study the properties of the solutions. and analytically gives back the corresponding, size-
Due to its engineering importance, there have been @dependent, force term in Young's equation.
large number of articles focused on electro-wetting limiting ~ Section Il A presents the mathematical framework that
phenomena: why does the contact angle cease to change aftekes the energy term for any physical effect and computes
some critical voltage is reached? To date, some of the prathe resulting force term in Young’s equation. Sections Il A
posed physical mechanisms include: electrolf&ispntact and 111 B verify this framework for two simple examples
line electrostatic/capillary instabilities for pure wafeipn-  where the answer is known and is straightforward, respec-
ization of air in the vicinity of the drop eddecharge tively. New ground is covered in Secs. IVA4 and IVB,
trapping; and a proposed zero surface/liquid energy Ifnit. culminating with the contact angle saturation example of
Chargelion adsorption from the liquid to the solid surface,Sec. IV C.
and its effect on the solid/liquid surface energy, is another  The basic tenets of our analysis are: a total energy mini-
possible source of contact angle saturatfdrf® The match  mization, a phrasing of Maxwell’s electrostatic partial differ-
between contact angle saturation theory and experiment igntial equation§PDE9, an analytical extraction of how the
often inconclusive, and/or the model parameters have begPDE solutions change with analytically accessible param-
chosen to fit one set of data but have not been validatedters, and a numerical solution of the remaining, normalized,
against a different independent set of défanotable excep-  shape-dependent PDEs to capture parametric dependences
tion is the work of Verheijen and PrindThese authors show that are not available analytically.
good agreement between experiment and theory and they g, A total energy minimization approach with a constant
present a second independent test to show that charge trapuid volume constraintWe write down the energy due to
ping is responsible for contact angle saturation in their detiquid/gas, liquid/solid and solid/gas interfaces plus the en-
vices) It is possible, in fact likely, that different limiting ergy stored in the bulk due to applied external fields such as
phenomena are important in different devices: Vallet, Val-gravity and the imposed electrical potentials. The energy is
lade, and Bergésee luminescence in their devices and arguaninimized subject to the constraint that the liquid volume
that gas ionization is one of their dominant phenomena. Wen,st remain the same. This gives rise to a Young-type equa-
do not see any luminescence in our devices but we have begin that can account for any physical effects and which in-
able to accurately predict contact angle saturation for mulg|ydes droplet size dependence.
tiple devices, without fitting, by including the small electrical Although the link between energetics and Young-type
resistance found in the liquid. formulations has been explored partiallsee, for example,
There have also been a number of studies about the eIe@hap_ 10 in Probstelf and Refs. 16 and 1%his argument
trical and chemical details at the interfaces: Lykiéare-  has traditionally been applied for a pure translation of the
sents a comprehensive discussion of ion double-layer theggyid/gas front: no change in droplet size is considered. This
ries; Ch_oﬁo presents an analytic solution for the liquid/gas means that the raditR does not appear in the formulation,
shape right at the triple point under an applied potentialyng s all the size information is lost. Using this approach, it
Zimmerman, Dukhin, and Werrr’érprowde an experimental s fyndamentally impossible to recover size dependent terms
and theoretical treatment ¢fpotentials and solid/liquid con- |ike the “line-tension” 1R-type term debated in the litera-
ductivities due to ion adsorption; and Koopal and A\f@na ture. This term is usually included based on phenomenologi-
provide an excellent description of adsorption kinetics. We,g considerations, not derived from first principles, hence
do not consider such fine-scale spatial details here. the debate. Our analysis includes variations in #nd ¢
and analytically recovers the size dependent terms. Thus,
given the energy due to any physical effect, we can analyti-
cally write down the corresponding force term in Young's
Our analysis is aimed at quantifying how different physi- equation. In particular, we can state when line tension terms
cal effects(gravity, electrical resistance, ionic double layers exist, and we can derive these terms from physical first prin-
influence the electro-wetting phenomena. In this article weciples.
are only interested in those physical phenomena that influ- b. Solution scalings for the electrostatic partial differen-
ence voltage induced shape change. Essentially, we nedidl equations (PDESs)In order to find the electrical energies,
some way of deciding which physical effects are importantwe first find the PDEs and the relevant boundary conditions
and which are negligible. We do this by finding the energythat describe the electric fields inside the liquid and solid
associated with each effect, by minimizing the energy to findohases.(Typically, Maxwell's equations are sufficient for
equilibrium conditions, and by rigorously converting that en-phrasing the right set of PDEs. But there are cases where we
ergy minimum into a Young-type equation that describes theonsider other coupled effects such as the thermal diffusion
change in droplet shape as a function of applied voltage aneffects found in the ionic double laygBefore solving the
other physical parameters. This lets us compare the relativesulting PDEs, we perform an analytic scaling analysis to
sizes of different effects. In this sense, our analysis is similaextract as many parametric dependencies as possible. By so
in spirit to Digilov.2® However, when necessary, we phrasedoing, we find how the solutions, and also the electrical en-
and solve Maxwell’s partial differential equations to find the ergies, scale with system parameters such as the applied volt-

B. Current approach
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ageV and liquid radiusR, and with intrinsic material coeffi-
cients such as the resistivitipsand dielectric constants In
most instances, this type of analysis is sufficient to reveal the
underlying nondimensional numbers that determine the

strength of the various physical phenomena. For example, 13

the Bond numbeB = pgR?/y,; which determines the size of =

gravity terms compared to surface tension effects can be re-

covered from a scaling analysis. FIG. 1. Spherical drop geometry is parametrized by raBiasd (apparent

c. Solving the shape-dependent normalized PDBisce  contact angles.
we have extracted the dimensional parameters such as the
voltages, radius, heights, dielectric constants and resistivi-

ties, it remains to solve the PDEs for the shapef,odepen- 4t written as the derivatives of a potential energy, are used

dence. This is done numerically. when it is not possible to track the details of all the underly-

d. Finding the energy minimerrom the scaling analysis jng conservative forces. An energetics framework is also ad-
and the shape-dependent numerical results, we can find g htage0us from a practical standpoint. It is not at all clear

total electrical energies as a function of the applied fieldsy,q,y jon giffusion gradients give rise to forces at the triple-
material coefficients and droplet shape. By minimizing thisppase jine, but it igrelatively) straightforward to find the
energy, we can find the contact angle as a function of paranlosential energy associated with an ion distribution field, and

eters. At the end, the result depends only on a few dimeng, yhen perform the energy differentiation described in Sec.
sionless numbers. In the case of gravity, the contact anglg; s find the associated term in Young's equation.

depends on the nondimensional surface _te_nsiqn qurﬁber b. Drop shape The drop is assumed to be essentially a
and the Bond numbeB. In the case of a resistive liquid atop perfect sphere truncated at the solid plane, as shown in Fig.
a dielectric solid, the contact angle depends on the surfacg g gravitational or electrical forces can squash a drop
tension coefficient’, on the insulating solid electro-wetting p,;t \ve assume that the applied external fields are sufficiently
numberU, and on the nominal ratio of solid to liquid resis- gma)| that this distortion is negligible. We also neglect any
tanceA, . droplet deformation right at the triple line because we are
e. Predict key phenomena, including line-tension andonly interested in the bulk, not local, shape of the drop. This
contact angle saturatianThis article essentially performs a means that the shape of our drop can be uniquely described
careful engineering analysis of the bulk electrical and surfac@y two numbers: the radiuR and the contact angle. After
tension properties of a sessile drop. Using this approach Wge have solved for the electric, gravitational, and other fields
have been able to rigorously show that a dielectric liquidas a function oR and 6, the liquid drop has only these two
leads to 1R line tension terms, but a conducting liquid does degrees of freedom left. The constant liquid volume con-
not. We have been able to assess the electrical resistivgtraint tiesR and ¢ together and thus reduces the problem to
capacitive RC) charging time constants, and we have beerg single degree of freedom.
able to quantitatively predict contact angle saturation in our  The methods in this article can be extended to non-
devices. It will be shown that saturation, at least in our despherical drops and puddles. In such cases, the spirit of the
vices, is caused by the small amount of electrical reSiStanCQevempment is exacﬂy the same, but the associated math-
found in the liquid. This explains why we continue to seeematics needed to find the larger number of parameters to

essentially the same contact angle saturation behavior fqfescribe the minimal energy liquid shape is more sophisti-
different dielectric coatings of different thicknesses: the satucated. See BrakRé for how to compute complex minimal

ration is basically fixed by the net resistance of the liquidenergy surfaces.

which depends on its SiZE, shape&, and its intrinsic resis- C. Equ|||br|um Thus far we have 0n|y addressed the

tivity p; . equilibrium shape of the liquid drop under applied fields and
material variations. To include droplet dynamics, which are
important for issues such as maximizing droplet switching
speed in the electro-wetting devices described in Cho
et al,*® two extensions will be required.

Our attention is restricted to a single, approximately  First, we will have to consider the time varying nature of
spherical, sessile drop in equilibrium, under applied externalhe electric fields. This is done partially in Secs. IVC1 and
fields (such as gravity and electric potentjalwith variable IV C2 where we find that our resistive-capacitiv® €)
material propertiessolvent, ion type and concentration, and charging time constants are on the order of milliseconds.
the dielectric constants of the liquid and soliBor this case, Second, and more importantly, it will be necessary to incor-
the modeling framework and underlying assumptions areorate our results into fluid simulations that solve the low-
listed below. Reynolds limit of the Navier-Stokes equations for two-phase

a. An energy minimization approachVe phrase all flows. Two points are important. A common concern is the
physical effects in terms of energigmot forces. From a  validity of the continuum assumptiotsee Besko® for a
tautological standpoint this is attractive because all knowrgood overview which is not an issue in our micrometer
forces are derivatives of a potential enefgge Vol. |, Chap. sized devices. Also, there is an inconsistency between sur-
14, Sec. 4 in Feynmd?h). Nonconservative forces, which are face tension contact angle and viscous no-slip fluid boundary

Il. ASSUMPTIONS AND THE MATHEMATICAL
FRAMEWORK
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conditions™®*"193if hoth boundary conditions are enforced, Solving fordR in terms ofd# yields

and if the fluid is a realistic fluid where discontinuous veloc- > co§( 012)cot( 0/2)
ity fields are not possible, then the triple line cannot move. dJR=Rqg(6)do=R| — 0 4

o(6) S cosd T
Resolution of this issue is an active area of research. cos

d. No roughness or hysteresiNo surface roughness ef- where q(6) = —[2 cog(6/2)cot(@/2)]/[2+cosd]. A similar
fects are included in the current model. The contact anglequation is derived in Decamps and De ConifftWsing Eq.
hysteresis that arises from surface heterogeneities or rougiy), Eq. (1) can now be rewritten to show how the energy
ness can be modeled by energy consideraibmsd thus changes with contact angle
can be incorporated into the current framework.

e. No evaporation The liquid volume of the droplet d_E_ f
shown in Fig. 1 is assumed to remain constant. If we wanted d# [JR
to include the liquid volume change associated with evapor, order to get the traditional Young terp, cosd to appear

ration, we would need to formulate the energies associateg this equation, it is necessary to pre-multiply E§) by
with phase change and let volume become a variable instead(2+cosg)/27TR2 sin . This term is strictly negative for all

JE
=|—=(R,6;p)|Rq(9)+ a—a(R,ﬂ;p) =0. 5

of a fixed parameter. possible contact angles<09< 7 so there is no division by
Rigorous conversion from energy minimum to the zero. Thus
modified Young'’s equation
gsed 2+cosé \dE
This section presents the mathematics for converting an > RZsing) Ao

sessile drop potential energy functincluding energies for

effects such as ion concentrations, electric fields, and mate- 2+ cosé JE

rial variationg into a Young-type equation. This link is rig- =( )([ﬁ—R(R,a;p)}Rq( 0)

orous and exact: there are no approximations associated with

the conversion. All approximations reside within incomplete

knowledge of the energies, or within the assumption that the +

drop is a perfect sphere completely described by radiasd

contact angled. In Sec. Il we will find the total potential is exactly Young’s equation, although written in a new way.

energyE(R, 6;p) of the drop for different physical scenarios. In the special case whef only includes the energies

At the end of all computations, this energy will depend ondue to liquid/solid, liquid/gas, and solid/gas interfaces with

the drop radiusR, the (apparent contact angled, and rel- constant surface tension coefficients, as in Sec. lllA, this

evant system parametegussuch as applied voltagé dielec-  equation becomes exactly,y cos6—(yys— ¥is) =0. How-

tric constantse, and s, and nominal liquid ion concentra- ever, this formulation can handle any potential energy func-

tionsc,. tion E(R, 6;p). If we include additional effects such as elec-
At equilibrium, the drop will assume a shaped that trical energy in the solid, electrical energy in the liquid,

minimizes this energyE. This means that the derivative of gravitational terms, or ion concentration effects, then (&g.

 27R%sing

E Ry )_
%m,a.p)} =0 ®)

the energy with respect & and 6 is zero will rigorously produce additional terms in Young’s equation.
JE JE
dE=|—(R,6:p) |dR+|— (R, 8:p) |d6=0. (1) . TWO EXAMPLES AND THE SIZE DEPENDENT
IR a0 TERMS
Equation(1) says that at an energy minimum, the infini- The first example is a drop that only has energies due to

tesimal change in energy due to shape variations must bieterfaces. The purpose of this example is to verify the
zero, and that there are two possible shape variations: one framework of Sec. Il A and to show that we exactly recover
R and the other im. It is not possible to change without  the traditional Young equation in this simple case. The sec-
also changing; if ¢ increases in Fig. IR must decrease to ond example includes gravity. This example shows how bulk
keep the drop volume constalmeglecting evaporationThe  effects are included in the analysis, the electrical fields of
drop volume is given by Sec. IV are included in the same way, and it demonstrates
how scaling arguments can be used to extract the relevant
v(R,0)= WRS(E— _3 cos¢ + cos 30) 2) nondimensional parameters. We close this section with sub-
3 4 12 section IlIC which converts size dependent energy terms
Since volume is constant, its variation must be zero, henceInto the cor'respondln.g siz€ dependent termg In Young's
equation. This subsection shows wheR lihe-tension terms
are active.

(7UR0
ﬁ(,)

2 3cos# cos3H
=|37R?

dv= dR+ de

Jv
—(R,0
d 9( ) A. Interfacial potential energy

We start with a trivial example. If we only consider the
potential energy due to the solid/liquid, solid/gas, and liquid/
) ) gas interfaces, and if we assume the surface tension coeffi-
- 3<3 sind  sin 39) }d _o 3) cients are constant, then the sessile drop interfacial potential

4 4 energy is given by Probstétin Chap. 10

374 T2

+
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E. .= — At viA 7 To actually find the form factoa,,,, we carry out the
int= (Vs ')’gs) Is™ YigNig » (7) ) y gty ry
shape integration. Namely

where the subscriptiss andg denote liquid, solid, and gas
phases, respectivelyy;; is the interface areéso A4 is the a (G)ZJ
area of the liquid/gas interfageand y;; are the surface ten- vty —
sion coefficients with units of energy per area. The solid/gas 5
coefficienty,s appears with a negative sign becausa,ifis _cm 6

increased bi/ some amount, thégs must be decreased by 3 Qg3+ cosd]sin(6/2). 12
the same amount.

For the drop shown in Fig. 1, it follows from purely As necessary, this factor is zero whér 0 (total spreading

m

— mog[cos¢+ cosh]sin(¢) dé
[

geometrical reasoning that corresponds to an infinitely thin, infinitely large puddle and
means no potential energy due to grayity maximal when
AR, 0) = 7R?sir?0, (8) 0= (no wetting, and is strictly positive for allp in be-
tween.

Combining this result with the Eq$10) and (11), the
potential energy due to the interfacial and gravitational terms
is

Ag(R,0)=27R*(1—cos6). 9

In consequence, the interfacial potential energy is

E(R,0)=R[(yis— ygd m SIP 0+ y,g2m(1—cosb)]
Ei(R,0) =R (ys— Vg T sit o+ Yig27(1—cos6)]. .
(10 +R*og < [3+ cosf]sint(6/2). (13
As expected, the interfacial potential energy term scales with
drop radius squared. If we plug, into the conversion de- The interfacial term is at a minimum wheé is equal
scribed by Eq(15), then, after some half angle trigonometric to the no gravity equilibrium contact angle. The gravity
identities, we exactly recover the traditional Youngterm is at a minimum whe=0 and so it tends to flatten
equation? Yig COSO—(Ygs— ¥1s) = O. the drop: its effect is more pronounced for larger
drops where the Bond ratioB=R*0g/R*>y=R%pg/y
is substantial. A standard calculation shows that for a
We now consider the potential energy due to gravity.0.1 mm sized drop of water, the Bond number is
This case is presented because it demonstrates some of tgproximately (10* m)?x (10° kg/m®) x (9.81 m/$)/(yy
key concepts, such as solution scaling, for a simple and in=7.3x 10 ? kg/s’) =0.0013, which means that the gravity
tuitive example. In reality, for most practical microfluidic potential energy is only 0.1% of the interfacial energy.

B. Gravitational potential energy

devices, gravity is negligible. Using Eq.(15) derived below, and dividing through by
It is possible to find the form of the gravitational poten- y,,, the dimensionless Young's equation for a liquid drop
tial by a simple scaling analysis. with gravity is

A liquid element of volume\v, of densityp, at height
¢ above the solid reference plane, will have a potential en-
ergy due to gravity ofAE,,,=mgl=0gfAv, wherem cose—(
=pAv is the mass of the element agd=9.81m/$ is the
acceleration due to gravity. The total potential energy due to
gravity is the integral over all the liquid elements within the
drop shape. For a drop of radius one, the integrat @¢ dv C. R¥a(0) energy terms lead to  R¥~2p(#6) Young
over the drop shape will give some function 6fonly: terms
Equy(R=1,0) =ag(0). If we increase the size of the drop
by a factor ofR but keep the shape, meanimg the same,
then the integral will change by a factor Bf — the “num-
ber” of elements remains the same, but there is one factor
R for the change inf and three factors oR for the cubic
change indv. Hence the potential energy of the drop due to
gravity must be

cosfd cos20 1_
3 12 4|

Ygs— 7Is> n ( Rzgg)
Yig Yig

(14)

As shown in the two examples above, many potential
energy terms scale &R, 0) = R*a,(8) whereR is the size
quependence aral, is a shape factor. Interfacial energy terms
n Sec. IlIA scale asR%a,(6), gravity terms scale as
R*a,(6#) in Sec. llIB, the conducting drop will have a
R2a,(6) scaling (Sec. IVA), and the dielectric drop will
display aRa;(#) scaling(Sec. IV B. Some physical effects,
. like the fixed electrode height resistivity effect of Sec.

Eguy(R, 0)=R"ag,(0), (11 IV C 4, will lead to energies that do not scale simply as pow-

ers of R. But even in this case we can expand such terms into

whereag,( 0) is the shape form factor. ThR* dependence a power series irR, or we can just apply Eq6) directly
will create anR? term in Young’s equationy;q cosf=(yys  Without the additional analysis described below.
— 75+ R?b(#), as described by Eq15) in Sec. Il C be- Using Eq.(6), we see that &=R*a,(§) energy term
low. gives a
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Young’s equation term for &= Rka,( ) energy term

2+cosé | (JE Ra(6) JE

= _—_ _— + R
277R25in0 JR d a0 7 ¢:V_‘
h [unchargm it+ charged [T} volume ]
as =0

2+ cosé KRA-1 K 9 ¢

| 27R2sing R ak( G)Rq( 0)+R % FIG. 2. Left: Conducting drop atop an insulating dielectric layer of thick-
nessh. The voltageV is applied between the bottom-most flat conducting
2+ cosé Ja electrode and the electrode inserted into the top of the drop. Right: Sche-
= Rk—Z( _ 5end ka(6)q(0)+ _k( 0)) matic showing resu_lting dipole moments in the diglectric immediately
sing a0 under the liquid/solid contact area; here the electric fietd—(0,0V/h)

K—2 points down as shown by the arrows. The electric field is zero everywhere
=R “by(0) (15 else.
contribution in Young’s equationR* energy terms(e.g.,
gravity) lead toR? effects in Young'’s equatioriR?a,(6) en- . _ - '
ergy terms(e.qg., interfacial areas or insulating dielectric sol- 1. Potential energy in the solid dielectric layer

ids) reduce to puref terms, andRa(0) terms lead to B por 3 dielectric solid element at locatior, §,z), of vol-
line-tension variations. This means that the conducting liquid,me Av, with local electric fieldE(x,y,z); the electrical
drop in Sec. IVA Whose.elect.rical energy scalesRgswill potential energy isAE 4= (D-E)Av. Here D is the po-
produce a Young's equation with odependence. However, |arazibility vector field: it is the induced dipole moment in
the dielectric liquid drop whose energy scaleRaxg 0) will the solid per unit volume, see Feynmawolume I, Chap.
have a line tension term, and the magnitude of this term wiIIlO’ Sec. 2. For an ideal dielectric, this moment is linearly
be determined by the energy derivation in Sec. IV B and byg|ated to the local electric field b= e.E wheree, is the
Eq. (19. dielectric constant of the sold. HenAd 4= 3e4 E|?Av. Ne-
glecting edge effects, the electric field immediately under the
IV. THREE EXAMPLES WITH ELECTRICAL ENERGIES ~ solid/liquid contact area i&=—(0,0V//h); it points straight
_ _ ~down with a strength equal to the applied voltagelivided

Here we consider three examples that include electricahy the dielectric thicknesh. The electric field everywhere

fields. A conducting liquid atop a dielectric solid is discussede|se is zero as illustrated in Fig. 2. Thé&|E|?dv must be

in Sec. IV A: this recovers the traditional Lippmann—Young integrated over the volume=hA and this gives, together
relation. In this section we also address the role of the ionigyith Eq. (8), the energy stored in the solid dielectric

double layer. A dielectric liquid atop a conducting solid is ) )
analyzed in Sec. IV B: this case leads to & lihe tension EgR,0)= le (X) hA, :5sV R2 sirke. (16)
term. Section IV C considers a slightly resistive liquid atop a ’ 22 h * 2h

highly resistive dielectric solid this case recovers the contact inere aren solid dielectric layers, as opposed to the single

angle saturation be_havior we observe_ in our devices. Fofjiglectric layer considered above, theg/h is replaced by
each example, we find the total potential energy, extract thg e net in-series capacitance per unit aredé, + . ..
nondimensional parameters, and find the dimensionless*hnlen)_

modified Young'’s equation.

A. Conducting liquid atop a dielectric solid
_ _ o _ ) 2. Potential energy stored in the external charging
In bio-chip applications, the water will contain an appre- oy rce

ciable number of ions and will be a good conductor of elec-

tricity: see Probsteif? Sec. 2.5, for a relation between ion The basic reason this term has to be included is that
concentrations and the resistivity or conductivity of water. To€VerY time the drop shape changes, the charged volume im-

prevent current flow, the dielectric coatings in our EWOD mediately under the solid/liquid c_ontact area changes, and a
devices® are designed to act as insulators. Thus, to a firsPacket of chargd Q must be received from or pushed back

approximation, the experimental arrangement in EWOD deddgainst the fixed voltage source. This requires an amount of

vices can be described as a conductive liquid above an insf£0'K, or minus potential energyy=VvAQ=—E. It follows

lating, dielectric solid. It will be shown that this conducting that the energy stored in the charge source is twice again the

liquid/ insulating solid case exactly recovers the Lippmann—-ENergy stored in the dielectric but with opposite sign. A care-

Young relation yi, oS#=[ ygs— yis+ €V2/2h], but it does ful exposition of this result can be fognd in Vol. .II, Chap. 8,
not lead to contact angle saturation or any line tensiorp€C: 2 Of Feynmaifi and also in Verheljenzand Prlzﬁsgnd S0
1/R-type terms. it is not repeated. Hendg (R, 0) = — (e,V?/h) 7R? sirfé.
Figure 2 shows the relevant geometry. Because the liquid
is conductive, the potential at the solid/liquid interface is
equal to the applied voltageiy=V. There are three sources
of potential energy: the interfacial energy derived in Sec.  Combining the interfacial energy of Sec. Il A with the
[l A, the dielectric energy stored in the solid, and the energydielectric and external source energy derived above, the total
stored in the externally applied charging source. energy for the conducting drop system is

3. Total energy and the Young -—Lippmann equation
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€.V?
E(R,0)= RZ{( Yis™ Ygs— S—) 7 Si? 0+ yig27(1—coso)

2h
mo

Note thates is the dielectric constant of the solid, not the £ ,
liquid. b
Equation (17) is identical to Eq.(10) except thaty

— vgs has becomeys— ygs— eV?/2h. Using the results of
Eq. (19), and dividing through byy,q to nondimensionalize,

we exactly recover the Lippmann—Young relation FIG. 3. Adielectric liquid drop with dielectric constaatatop a conducting
solid. The bottom plate has a zero ground potential 0, but the liquid
( Ygs— Vis 65V2 ) immediately surrounding the tip of the electrode at the top of the drop has a
cosf— | ———+ =0. (18 ¢=V potential.
Yig 2"}’Igh

This equation contains no line tensiorRlterms because the

energy stored in the dielectric scales as the charged volunfeotential®*® If, in turn, the solid/liquid surface tension co-
in the solid, and this volume scalesAgh~R?h. Sincehis  efficient ys depends on the wall ion concentratiotys
constant, this stored energy behaves just like a liquid/solid= 7is(C+), as stated in Butkus and GrasSathen v be-
interfacial energy term. To get a line tension term, it is nec-comes a function of the applied voltage jf(c..) is known
essary to have a physical effect whose energy scalBsrast ~ experimentally, say from Butkus and GrasSehen Eq.(19)

asR? (see Sec. IVR together with a voltage balance giveg= ys(V). This must
then be substituted into E@7) and the voltage dependent
4. Effect of ionic double layer ¥s(V) will then appear in Eq(17) also. The methods of Sec.

A and Eq. (6) will now return the modified Young's equa-

) Il
There are two basic physical effects associated with th‘ﬁon for this case.

double layer. The first is the capacitive energy stored in the More complex situations, such as those involving protein

double layer: this effect is negligible in our devices. Lipp- 54sorption/desorption, raise two key issues. First, how
mann theory treats the ionic double layer as a Helmholtzy, g1y does the liquid/solid surface tension coefficignt
capacitor. As pointed out in Ref. 24, this is equivalent ©0yehend on the species concentration at the wall? Butkus and
treating the ionic layer as yet another material laggy in Grassé® find a moderate change i based on electrolyte
our case we would then have three layers: silicon diOXideconcentration. Van der Vegt al?’ find a much stronger
Teflon, and the ionic layer Since the thickness of the ioniC \ aiation of both the solid/liquid and liquid/gas surface ten-
"’?‘yef(”ms) Is much small.er tha_n the thickness (,)f the Mate-gion coefficients. Second, what is the transport rate of the
rial coatings (‘_Lm S), _th.e dlelegtrlc energy stored in thg I0NIC chemical species from the liquid bulk to the solid/liquid and
double layer is negligible. It is possible to make this argu-jiqiq/gas interfaces? And how does this transport vary with
ment precise even when nonlinear effects in the ionic dOUbI%.ppIied voltage? As noted in van der Vastal,2” chemical

layer are considered. For the standard fully dissociated, Syn&'pecies transport is a complex and important issue.
metric salt situation discussed in Refs. 38 and 12, it can be

shown(see the Appendjxthat the ratio of the energy stored
in the double layer to the energy stored in the solid dielectri
must fall belowe\ p / €,hg which is on the order of 0.001 for We now compute the electric potential energy for a di-
our devices. Heres denotes the dielectric constant in the electric liquid drop with an applied voltage. This case is
liquid and solid,\p is the Deybe double layer length scale treated because we are interested in transporting dielectric
which is typically on the order of nanometers, whilgis the  liquids such as silicone oil, and because this case recovers
height of the insulating solid layer and it ranges between 0.the controversial R line tension terms from physical first
and 10um in our devices. principles. Such terms are included in Refs. 26 and 22 based
The second physical effect is the possible change in then phenomenological grounds. Below it is assumed that the
liquid/solid surface tension coefficienfs due to voltage in- drop is an insulator with dielectric constagt and that the
duced surface chemistry. This effect can be important. In ousolid is a perfect conductor; for example, a droplet of sili-
devices, protein adsorption/desorption to the Teflon surfaceone oil atop a metal electrode. A voltayeis applied as
is modified by the applied voltage, and the adsorbed proteinshown in Fig. 3.

change the surface tension properties of the Teflon apprecia- . .
bly. 1. Electrical energy scaling

(;3. Dielectric liquid atop a conducting solid

Consider first a simpler case. For a standard fully disso- For this case, we assume the top electrode is always
ciated symmetric salt, the change in the positive and negativeositioned so that it only penetrates the tip of the drop. The
ion concentratiomc.. at the solid/liquid interface depends analysis for a fixed electrode case is analogous to the analy-
exponentially on the applied voltage as sis carried out in Sec. IVC 3. The end result for the fixed

Ac. = G e ZFRVq (19 e!ectrode case is ;imi_lar to the \{arying electrpd_e height case

= discussed here. Like in the gravity example, it is possible to
wherec, is the far field ion concentrationy is the voltage find the form of the electrical potential energy by a scaling
drop across the double layer, anB/RT is the characteristic argument. As in Sec. IV A, the potential energy stored in a
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small volume Av of (idea) dielectric material iISAEy,
=1¢|E|?Av, whereg, is the dielectric constant of the liquid
andE(x,y,z) is the electric field in the liquid.

To see how the electrical energy scales with voltage,
radius, and the dielectric constant, we need to understant
how .the electric fIEICE.Va”e.S Wlth these .param_EterS' First FIG. 4. Four drops of equal radius but different contact angted54 °,
consider a drop of unit radius with a unit applied voltage.;14 78°, and 37°. The constant electric potential contab(sy,2)
The electric potential field within such a drop is described by=c are shown for a vertical slice through each of the four drops. The
Poisson’s equatiorV2¢(x,y,z)=0, with boundary condi- calculated form factor for each drop i@ 6)=/r-1v-1 arod V ¢|°dv
tions Ppotom= 0 andd’top:V: 1. (Side boundary conditions, =0.0592, 0.0609, 0.0617, and 0.0640, respectively.
which are independent &® andV, do not affect the scaling
argumeni. The electric field is then the gradient of the po-
tential field:E= —V ¢=— (9Pl X,d Pl dy,ddl Iz).

Consider the potential field(x,y,z) inside a drop of
unit radius with applied unit voltage. If we double the size of
the liquid drop then the potential fiel@ is stretched by a
factor of 2! ¢r_1(X,y,2) becomes ¢r-»(X,Y,2) 1
— dr_1(x/2y/22/2). This means that the electric field,  EeledRi0)= 5 €RV?agd 6) — R V?agd 6)
which is the rate of change of the potential in space, L
will  become half as strong. Thus Eg(X,Y,2) B o
=1/REg_(X/R,y/R,Z/R). Conversely, if we double the ap- =~ zaRVawd0). (22
plied voltageV then the electric field will be doubled. There-
fore, if we know the electric field at positiorx{y,z) for a
drop of unit size with unit voltage, then the electric field at
(Rx,Ry,R2) for a drop of radiu®k with applied voltage/ is

As in Sec. IV A, the potential energy stored in the volt-
age source is twice again the capacitive energy stored in the
dielectric, but with opposite sign. Hence the total electrical
energy stored in the system is

Equation(15) implies that theR dependence inside this term
will give rise to a line-tension-type effect in Young's equa-
tion:

1
\Y Yig cosf= ('ygs_ Yis) + R b(8).
Erv(RXRY,R2)= ﬁERzl,Vz 1(Xy,2). (20
Thus we have been able to derive the phenomenological line

To find the stored potential energy, we must integrate thd€NSion term cited in Refs. 22 and 26 from physical first
energy per unit volumeAEg.= 1 |E|2Av over the drop principles by using Sec. Il A and a scaling argument.
shape. Namely

2. Shape factor a 4.(6)

1 ) .
Ege= _f €|Ery|?dv, To find the form factorayd 6), we need to solve Pois-
R,V drop '

2 son’s equation for all possible drop shapes. Figure 4 shows
the electric potential fieldb(x,y,z)=c contours for contact
1 V2 ) anglesf=154°, 114°, 78°, and 37°.
- EJR,V dropEIQ|ER=l,V=1| do, Form factor results for 14 contact angles are shown in
Fig. 5. Notice thatayd#) is nearly independent of for
> contact angles between 50° and 140°. This is because all
:1 |V—R3f |Er—1y_1|2dv, the high electric potential gradien¥¢ that make up the
2 R? R=1V=1 drop ' majority of the integral occur at the top of the drop, or at the
top and bottom when the contact angle is close to 180°.
where the last equation is a consequence of the fact that th-@ence 0n|y a very small ang]e can impact the h|gh gradient
volume v scales asR®. The integral in the last line only region at the top, and only a very large angle can create and
depends on the shape (both R and V are fixed to unity  then affect the high gradient region at the bottom.

hence Using the form factor of Fig. 5, together with E2),
1 the potential energy for the interfacial plus electrical energy
EadR,0)= EflRVZJ |Er=1yv=1/%dv 'S
R=Lv=1 drop E(R,8)=R?[(7yis— vgd 7 SiMP 0+ yig2m(1—cosb) ]
1 2
_ - 2 eV
= 2 E|RV ade( 0) (21) -R |2 ade( 0) (23)

In summary, the electric fielE varies asV/R; it appears DefineW= e,V2/R7|g as the nondimensional dielectric liquid
twice in the potential energy giving ¥2/R? dependence, electro-wetting number. It is exactly this number that deter-
while the volumev scales a®R®. Together, they imply that mines the size of the R/ line-tension term. For &R
the stored electrical energy for a dielectric liquid drop scales=0.1 mm drop of silicone oil with a dielectric constant of
as3eRV2ayd6). €,=2.5¢ (from CRC handbooK) wheree is the permittivity
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Form factor a(6) for insulating drop Contact Angle vs W for Dielectric Liquid
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FIG. 5. Circles show the computed form factag(6) for 14 different ) o ] ] )
contact angles. The stored energy in the liquid dielectric, for a drop of radiu§!G. 6. For a dielectric liquid atop a conducting solid, this p2|0t shows the
R with applied voltageV, is now given byE .= %ﬂRVzadé 6). Since the c_ontact _angle dependence on the electro-wetting numberslv /Ry _for

di . ~ 15\2 this al . he liquid d six nominal(zero voltagg contact angles. The analysis above predicts that
energy stored in a capacitor Eye=3CV* this also gives the liquid drop o 105 shape will snap-to complete wetting past some critical electro-

capac_itange_a@(e) =€ Rayd 0). Using ¢ in radians the equation_for the wetting numbeiV* . The predicted snap-to limit/* is within the plot range
solid line fit is ag(( 6) ~0.0592+ 0.0012)+0.0022 tan(1.7+ §) and itonly ¢4 the three bottom curves. Three cautions are necessary: first, the shown
holds for 0.4<#<3 in radians, or equivalently for 25°6<172° in de-  gnantg situation for the bottom three curves corresponds to a very high
grees. electric field(the drop is thin and the voltagéis high); second, the fit for
aqd #) used to generate these results does not holdfo26 °; third, we
suspect that other physical effects, like electrolysis, will become active at

of vacuum, and an applied voltage of 100 V the ratio of thehigh V/low 6, and this snap-to total wetting will not occur.

interfacial to electrical energies is approximatedy2W

=a/2ReV?/R?y,y= a/2¢V?/Ryy=~(0.06/2)x (2.5x 8.85 _ _ _ o _

X 10712 C/Vm) X (100 V)%/(0.0001 m)x (0.02 J/nf) is not, in fact, due to a line tension in any physical sense. It

=0.0033. Evidently, less than 1% of the energy of our ex-arises because the drop volume scaleRhand the electric

ample drop is electrical energy. We would have to increasdi€ld scales a¥/R. Upon integration of the dielectric energy

the voltage up to 1000 V before the electrical energy bethis gives anR-type energy dependence, which becomes a

comes appreciable; in that cas@W~0.4. 1/R force dependence via Sec. IlIC, E(5). The exact
Creating such a high voltage for such a small drop couldf@me scaling argument gives, for a conducting drop on an

lead to dielectric breakdown: the electric field generated fofnsulating surface, ani” energy dependence in E4.7) and

1000 V across a 0.1 mm drop j&|~V/R=10" V/m. For  ho 1R/ine tension in Eq(18).

oils, dielectric breakdown typically occurs right around  Equation(24) cannot be solved analytically, but can be

10° V/m. In terms of the electric field, the electro-wetting Solved numerically. Figure 6 shows the resulting variation in

number W scales aSe|R2(V/R)2/Ry|g:e| R|E|2/7|g, so it contact angle as a function of the nondimensional electro-

would actually make more sense to pick an electric field thayetting parameteM/= € V?/Ryq. The contact angle de-

is high but is substantially below the dielectric breakdown,creases only gradually with increasiig This means that

and then to increase the drop radisuntil W approaches dielectric liquids on conducting solids will change shape

unity. Such an experiment should allow one to see appreenly slightly under applied electric fields. It is clear why it
ciable line-tension effects. would be difficult to measure such an effect experimentally:

the effect is small and it is sensitive to the dielectric proper-

3. Young'’s equation for a dielectric liquid: The ties of the liquid.

“line-tension” term

Applying Eq.(15) to Eq.(23) and dividing byyy, gives
the nondimensional Young equation for a dielectric liquid
drop in terms of the electro-wetting numbéf= 6|V2/Ry|g

Yos— 'y|s) B 1 ( €|V2){ 2+ cosé

C. Slightly resistive liquid atop a dielectric,
highly-resistive solid implies contact
angle saturation

In Sec. IVA we considered the case of a conducting
liquid atop a perfectly insulating dielectric solid: this case

COSQ—(

Yig 2\Ryyq 2msing recovered the Young-Lippmann E@8), and was a first-cut
dage model of the physical situation encountered in our electro-
X|agqd 0)q(6)+ a0 (0)} =0. (29 wetting devices. However, the assumption of a perfect insu-
lator is unrealistic, and so we introduce the resistance of the

Hereq(6) is defined immediately below E@4) anday(0) solid (which is large by designand also a small amount of
is shown in Fig. 5. Notice the B/ “line-tension” depen- liquid resistancgwhich is unavoidable in practi¢eLiquid
dence. We write “line tension” in quotes because the effectresistivity depends on the number and type of ions in the
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FIG. 7. Left: A bulk circuit diagram for a liquid with a small amount of electrical resistaRgg atop a dielectric solid with capacitan€g,, and a large

amount of electrical resistand®, (by design. Middle: The correspondingsteady-stajePDE with boundary conditions. Heres(x,y,z) is the electric
potential inside the three-dimensional drgpis the resistivity(units 0 m) wherep=p, inside the liquid is small ang = p, inside the solid is large, and
V(1/pV ¢)=0 includes the liquid/solid electric field jump conditions;is the outward unit normal and s6¢-n=0 is the no-flux external boundary
condition; finally $=V and ¢=0 are the top and bottom boundary conditions applied by the voltage source. Right: This figure shows an example solution
of the PDE equations. The lines show 28 equally spaced contours of coétagntz)=c for a vertical slice through the three-dimensional liquid and solid
geometry. Notice that almost all the voltage drop occurs across the solid but there is also a small amount of voltage drop in the liquid.

liquid, see Probsteilf, Sec. 2.5. These features are all that iSsulator, then the above impedanezés) reduces toz(s)
required to replicate the contact angle saturation that we see 1/sC,, and we recover the pure solid capacitive case of
in our devices. Sec. IVA.

~ We note that many different physical effects can poten-  as pefore, all the reversible electrical energy is stored in
tially cause contact angle saturation. Any kind of loss mechaghe solid capacitor and the voltage sour€Ehe liquid and
nism will cause the reversible dielectric energy stored in theyg)id resistance only cause a non-reversible energy) [os.
solid to deviate away from the ideal Y(_)un_g—Lippmann value.energy stored in the solid capacitor is sfilj=2Cs V2,
Verheijen and Primspresent a convincing argument that \yhere Vs, is the voltage drop across the soligee
charge trapping is the dominant loss mechanism in their deFeynman” Vol. 1, Chap. 22, Sec. b To find this voltage
vices. Other mechanism are proposed in Refs. 4,6 and 2%rop, note that the impedance of the solid i,
We_stress three points here. One, a reasonablg amount Qfl/(l/scsopL 1/Rg,), that the current through the liquid is
liquid resistance will cause contact angle saturatgee the he cyrrent through the solid is the total currdpg= g

development belo Two, the saturation predicted by liquid — | and that Eq(25) relatesv(s) andl(s), hence
resistance accurately matches the experimental data we see

in our devices(see Fig. 13 Three, liquid resistance is the Zsol(S)
. sisee Fig. 18 quid re IS the v (8)=2af$)1 ()=~ V(s)
leading cause of contact angle saturation in our devices. We z(s)
examined a large number of physical mechanisms and liquid 1
resistance was the only physically meaningful assumption = V(s) (26)
. : R, ’
that was able to explain our experimental data. 14 ﬂJrquiquol
Rsol
_ - Thus in steady state, i.e., assiw—0, the voltage and en-
1. Equivalent circuit diagram ergy stored in the dielectric are
To understand how liquid resistance affects contact angle __ 1 R | 1 2_2
saturation, first consider the bulk circuit diagram shown on ~ Vso™= TR V. E4e=5Csol TR \%A
the left side of Fig. 7. When the total resistance is large but 1+ R—'q + R—'q
sol sol

finite, there is a small amount of current fldwthrough the 27)
liquid and solid. Following standard electrical engineering .

practice, the relation between the voltagand the current  whereV is the applied dc voltage. This is the same depen-
is most conveniently expressed in the frequency domain by eence as shown in E¢16) for the perfectly insulating solid
complex impedance(s) =V(s)/I(s). (Heresis the Laplace (sinceCg,= e,Ais/h), except for the nevR;q/Rgo term. The
variable. For a sinusoidal signN(t)chos(Nt) of fre-  key observation is that the resistance of the liquid dRgpis
quencyw, takes=iw. Settingw=0 gives back the steady- shape dependent, and it is this dependence of the resistance

stateV/(t) =V case) The total impedance for the circuit dia- ON the contact angi&;q=Ry(6) that is going to lead to
gram shown in Fig. 7 is contact angle saturation. The mechanism is elucidated below.

R
V(s) 1+ R—“q +SRigCosol 2. PDE'’s and their solution
|
@ZZ(SF = 1 : (25 Our first task is to find the PDE’s and boundary condi-
SCsort R tions that describe the steady-state electric potential
sol &(x,y,2) inside the liquid and the solid.
If the liquid resistance is set to zer&(;—0) and the solid We have assumed that the liquid is a resistor with resis-

resistance is set to infinityRs,— ) to model a perfect in- tivity p, but that it has no capacitive effects. The current
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FIG. 8. Solution scaling: Both pictures show the electric potential inside the liquid and solid with the same color scale: white denotes higloteletalic
black denotes zero potential, and the curves denote surfaces of cotgtaniz). The notch at the top represents the inserted wire electrode: the wire
insertion depttD is fixed and is taken into account in the scaling argument. The picture on the left shows a solution28) kjth R,=1, h=0.2 and

K0=0.2p5/p|=10. The picture on the right shows a solution Ry=1.5, h=0.15 and the same liquid/solid resistance r@;;: 0.1%4/1.5p,=10. Notice
that the solutions are essentially self-similar. There is a small discrepancy because the scaling argument ignores the horizontal strelbutgcHltedges
effects in the solid region immediately underneath the triple line.

density in the liquid is given bjj=E/p, whereE is the local based on the available current flow through the liquid and
electric field. By comparison, the solid has both a resistivesolid. From the preceding section, it can be shown and then
and capacitive component with resistivipg and dielectric ~ estimated that

constante;. The instantaneous current density in the solid is c R2/h

given byj=E/p+ e, dE/dt. At steady state, thdE/dt term e sl __Ss _
goes to zero and we are left witk=E/p. Conservation of 1Rso+1Rig  R?/psh+Rip,

charge_states that the divergenc_:e _of tr_le current densit;_/ ¥or a R=1 mm water drop, withp~5X10* Q m, pq
zero:Vj=0. Moreover, the electric field is minus the gradi- _ 12 () m, e=16x10"2C//m * and solid heighth
ent of the electric potentidt= —V ¢ hence

(29

=10 ® m, this time-constant is on the order of 10°s.

p, resistivity in the liquid Because this time constant is quite fast, it is reasonable to

treat the potentialp(x,y,z) as a steady-state quantity. Once

the potentialg is known, the dielectric energy stored in the

is the PDE that describes the electric potential inside both theystem is given by the integral ofiEq=3(D-E)dv

liquid and the solid at steady-state. This formulation cor-=3(esV ¢)-(V#)dv over the solid geometry

rectly includes the conservation of current flow in the verti- 1

cal direction across the solid/liquid interface, namejy: Ede(Rﬂ'h:V,Ps/Phés):Ef es|Vd>(x,y,z)|2dv. (30)

=(d¢ldz)lp is a constant across the interface wjth p, in sol

the liquid andp = ps in the solid, hence the solid/liquid jump Equation (30) mathematically captures the contact angle

conditions arepsd e, /9z=p|dps/ iz shape dependence left unsaid in E2j7). As previously, the
Boundary conditions for Eq(28) are as follows. The total electrical energy is the sum of the energy stored in the

potential at the bottom of the solid is fixed at a nomi@ld  djelectric and in the voltage SOUrCEq o= E gt E,s=Ege
arbitrary) ¢=0 potential. An inserted electrode at the top of _2g, = —E ..

the liquid is held aip=V by the applied voltage source. At

all the liquid/gas and solid/gas boundaries we use a zero

normal electric field conditiofE-n=V ¢-n=0, wheren is  3- Electrical energy scaling

the outward unit normal. This last condition is analogous to  Equation(30) shows how the electrical energy depends

the liquid/gas jump condition, herep(s/pg)Eq-N=Ej;s-n,  on the geometry R,6,h), the applied voltage/, and the

except that we further assume that the resistivity ofpgits ~ material propertieps/p; ande. Our task now is to flush out

large compared to the resistivity of the liquig and solid and simplify this dependence so that we can understand how

ps, and soE-n is essentially zero at the liquid/gas and the energy minimum varies with geometry, applied voltage,

solid/gas boundary. and material properties. This can be done by a scaling analy-
A summary of the PDE and its boundary conditions isSis just like the one used in Secs. llIB, IVA1, and IVB1,

shown in the middle of Fig. 7. The right side of the figure but with one additional key assumption.

shows a sample solution for @&=114° contact angle with If we look at the electric potential solution shown on the

applied voltageV=1, liquid radiusR=1, solid heighth right of Fig. 7, we see that the potential field surfaces

=0.2, and resistivity ratio randomly chosenmt/p;=230.  ¢s(X,y,z) =c inside the solid are horizontal except right be-

This solution should be understood as follows: if the droplow the drop edges. This is because the height of the solid,

shape were to somehow be heldéat 114 ° and a voltage h=0.2, is small compared to the radius of the liqid In

V=1 were suddenly applied, the electric potentigk,y,z) our electro-wetting deviceh/R<10 4, hence the energy

inside the liquid and solid would approach the field linescontent of the edge effects is tiny, and we can assume the

shown on the right side of the figure at a rate of.1This  electric field in the solid is essentially verticaEs~

time constantr is the charging time for the solid capacitor —(0,09¢¢/92).

oo -

ps resistivity in the solid
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Then the basic scaling result is this. If we take an existBy using scaling arguments, we have managed to take an
ing solution to Eq(28) with the boundary conditions of Fig. energy that depends on six variabld®, §,h,V,ps/p) ,€s),
7, and we stretch the liquid in they,z directions by a factor and rewritten it in terms of two nondimensional numbers

R, and stretch the solid by a fact®& in the x,y directions,  (6,A) times a simple dimensional quantitg R2V2/h). It
and byh in thez direction, the end result is still a solution so remains to find the shape facta¢6,A). We do this numeri-
long as the resistance of the liquid or solid is also changed scally in the next section.
as to keep the resistance raig=hps/R,p, at its previous
value. Figure 8 shows this scaling idea graphically.

This means that if we know the solution to E88) with
the boundary conditions of Fig. 7 for a fixed liquid radius
R=1, solid helghth 0.2, applied voltage/=1, and for At this stage, we are within the energy minimization

any contact angle9 any normallzed electrode penetration framework outlined in Sec. Il. For our slightly resistive drop

depthD/R and tivity ratior. /o = A, th | atop a highly resistive solid, we could note that the total

keF’ . an | i‘”y ref5|s ity ra 'q’sb PI= ; ?n we as? energy of the drofE(R, §) is given by a sum of the interfa-

Ro.D V. 6, andp. We are going to assume that the elec. 0o CneWYEm(R,:p1) n Eg. (10, and the electical en
,1,U, VL 0,Ps P - B E R, 0: in Eq. 2). Wi | h

trode is always at a fixed height above the solid because - 2 oedR.0:pz) In Eq. (3. We could then compute

this is how the experiment is actually done. Thus the relatior?(e’A) numerically and solve Eq(5) with outside param-

between the radiuB, contact angle? and the electrode pen- S€"S P1=(¥s=¥gs:7g) and pa=(h.V.ps/p;.€;). This
etration depttD is D = 1— cosé—H/R whereH is fixed but would yield the equilibrium contact angkas a function of

R, 6 andD vary. (The electrode insertion depihis shown in R,phand P2. thi is tedi for the followi
Fig. 8 but not in Fig. 7. Using this relatiorD =D (R, §) we Owever, this process 1S tedious for the following rea-

can suppress further discussion of earameter. In math- SON- The shape facta(¢,A) here depends on two variables.
ematical terms, if we |ege,A(m be the known solution To map it out accurately we would_havg tg evaluatimr. at

for R=1V=1 andh=0.2, (and choose such thaz=0 at least 15 values of and 10 values of\. This is 150 solutions

’ ’ of the three-dimensional PDE E®8). To get a sufficiently
fine-scale solution takes about 15 min per simulation, which
is a total of 37.5 h of run time(Of course we could paral-

4. Shape factor a (0,A(R)) and the constant volume
energy minimum

the solid/liquid interfacethen

¢|(x,y,z)=va9'A_<i,X,E) in the liquid lelize the computations, and take previous solutions as initial
R'R'R conditions for subsequent solution, but still, doing it in this
(X,y,2)=
¢(x,y,2)= Xy hz . . way is a significant computational burdgn.
Ps(X,y,2)= Vf/’ - the solid Instead, we are going to use a short-cut. The volume
(31) =v (R, 6) of the liquid drop is fixed. Inverting Ed?2) yields
— R(6) 3 4/3
is a solution for arbitrar h, V, 6, ps, andp, whereA must R, =1(0= |5 3 coss cos" (33
be set tohA=psh/pR. For example, to find a solution for 3~ T+ 17

R=1 mm, h=0.2um, V=50V, 6=120°, and ps/p, 5 _ _ _

=327, we first find the nondimensional solutigh for R~ WhereR,=YV[3v/4 is the nominal radius of a drop of vol-
—1 h=02 V=1 #=120°. andA=0.327. then the di. Umev that is a perfect sphereso for 6=). Under the
mensional solution is given by E¢B1). (For a proof of this constant volume constraint, the shape fagtamly has a¢

statement, see the Appendix. dependence
Using the above scaling, and noting once again that the ph/h’ A,
total electric energy is minus the energy stored in the dielec- a(é)=a G,W =a| 0,—— (34
tric (see Secs. IVA2 and IV A)3we find that the total elec- Pi hr(6)
tric energy is given by with A,=psh/pR,. Using this relation for the radiuR in
terms of#, the total energy can be written in nondimensional
Eeled R, 0,0,V ,ps/p ,€5) form as
1 E(6
T EJ'R h soli GS|V¢(X y.2)|°dv ( )2 =r2(9)[( s Ygs) Sirf 6+ 2m(1—cosh)
R Y
Yigho 9
1/eR? — _
== E(T) veh - 3( V) 2(6) Ha( g, LN LI ) 35
h')’Ig PR, 1(0)] |
X f* B Vou(x,y,2)|pats"" 2do Notice the dependence on the three nondimensional param-
R=1h=_2 solid TR eters
2 _
=— 1/&R vZhal o psh/h ) 32 r= Vs Yos_ nondimensional surface tension coefficient,
: (32)
2 h p|R 7Ig
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FIG. 9. The strength of the electric field inside the solid, and thus the amount of stored electrical energy, decreases as the liquid drop appwattires tot
Here we show a case where the resistivity of the liquid is 50 times smaller than the resistivity of the solid. All scaling is accordiri@p Bigt. with the
figures drawn to show a constant electrode height. The solid is colored by the strength of its eleciitdigldvith black denoting a low electric field, light
gray up to white representing a high field. Notice how the electric field strength in the solid decreases as the droplet spreads and there is & poogeassive
liquid path from the bottom of the top electrode to the solid near the triple (ihthere was no liquid resistance, the size of electric field in the solid would
remain the same for all contact ang)es.

e V2 constant volume. Different curves are shown for four values

U= hy = electro-wetting number for dielectric solid, of the solid to liquid resistance ratié,=psh/p/R,. The

& solid/liquid interface energy cunigg( 6) is shown for com-
—  psh o o . parison. For zero liquid resistance, thg=o curve is the
AOZPIRO = solid/liquid resistivity ratio. mirror image of theEg curve: Eqjed 6) = —Eg(6). In this

. . . ) case, Eq(35) becomes

These three nondimensional parameters will uniquely deter-
mine the contact angle. E=TEg+Ejq— 3UEg=(I'—3U)Eg+Ej. (36)

_Figure 9 shows sample potential field solutiah&,y,z) |t s as if the applied voltage it = e,V?/h ¥ig Were directly
for A,=10 for three values of. Here the solid is colored by changing the surface tension coefficients =y
the magnitude of the local electric fie|l¥ ¢y(x,y.2)[. The  — J/y,. So this says that if we increas high enough
constant liquid volume shape factioa] 6,A,/hr ()] isnow  (up toI'—3U=—1) then we would drive the contact angle
computed by numerically integratiny ¢<(x,y,z)| over the to §=0. The left side of Fig. 12 shows this scenario notice
solid (edge effects are truncatedResults are plotted against how asU increases, the energy curve unbends, andl at
¢ for four values ofA, in Fig. 10. As is necessary, the zero =3 (WhenT'—3U = ;- 3X3=—1) the contact angle arrives
liquid resistanceinfinite A, casé reduces to the Sec. VA Smoothly at total spreading. .
scenario Withﬁa(e,loooﬁ) indistinguishable from sirfé But there is always some liquid resistandg;# <. As

[compare with Eq(16)]. As the resistance is increased, thethr:S r“quéd re;us'&tan%e \l/liwctreasevﬁo( dfercrrﬁats;]e)stikée ::%ctrlgal
form factor a begins to fall away from the zero resistance ©'¢'9Y eied 0,A5) deviates away fro € ideat Ey(6)

case, reflecting the fact that there is now a substantial voltag\éaIue as shown in Fig. 11. This is just a consequence of

drop across the liquid and less capacitive energy is being

stored in the solid.
Electrical Energies for Fixed Liquid Volume

10 .

5. Detailed explanation of contact angle saturation ol = Ea (91“0 )

We can now precisely explain contact angle saturation 5 el \'\.\‘ _;_ E:::: (G:Ao=500) ]
through Figs. 11 and 12. o o — Ee. (0,A0=100)

Figure 11 shows the net electrical enerfyhen 3U u 4 "~.. | -0~ Eeec 0:A0=10)

. . . o
=1) as a function of the contact angefor a liquid drop of 8 2 =
o \'\,
£ o ==
-
: B o Soomougece - o - g FF
Resistance Form Factors: h a{, Ao/ h r(0) ) s -2 -T .
6 - - - ' £ .l -

—_ —— Ao=c 8

T 4} A~ po=500 W -8r e

p —— Ao=100 8l

w ol A, | “O— Ao=10 o

I Y __1 L L 1 2 2
< : 60 8 100 120 140 160 180
0 : . s 8 . <-total spreading e no wetting—>
0 50 100 150 200
<-total spreading 0 no wetting-> FIG. 11. This figure shows electrical energy curves for a fixed liquid vol-

ume. When there is no liquid resistancA &), the electrical energy
FIG. 10. The constant liquid volume shape factor of H§®) and (34). If exactly balances the solid/liquid interfacial energqed 6,A,=>)=
there is no liquid resistance, the form factor is proportional to the liquid/ — (2I'/U)E(6). This implies that the imposed electric energy can perfectly
solid area:a(6,)= sir?d. As the liquid resistance increases,( de- cancel the energy due to the liquid/solid interface. When the liquid resis-
creasepthe energy stored in the solid falls away from the ideal zero liquid tance is nonzeroA,<=), the electric energy deviates away from the mirror
resistance case. Points on the graph above are found by a numerical solutitnage ofEg and it is not possible to cancel the effect of the solid/liquid
of Eq. (28). Whend reaches 66 ° the top of the liquid drop has fallen below energy by driving up the voltage. This leads to the contact angle saturation
the bottom tip of the inserted electrode: this effect can be seen in Fig. 9. shown in Figs. 12 and 13.
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Interface+Electrical Energy (for ' = .5, Ao=s) Interface+Electrical Energy (for I' = .5, Ao=100)
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FIG. 12. Left: Total energy curves for a constant liquid volume as a function of contact @mdien the liquid resistance is zero. Different curves correspond

to different electro-wetting numbet$= esvz/hy|g=[o,0.5, ... 2.5,3]. The contact angle slides smoothly to zerd_amcreases. Right: The same plot, now
including a small amount of liquid resistanok= psh/p;R,=100. At lower contact angles, there is a greater net liquid resistance, hence there is a greater
energy loss, and hence the applied electric field cannot drive the contact angle to zero. Consequently, the contact angle is caught in an enesggunithimum

0~=75°.

solving Maxwell's Eq.(28) with the boundary conditions of ~6 2 due to an area versus volume scaling argument. But
Fig. 7 and using the constant liquid volume constraint of Eqthe electrical energy goes to infinity at a slower rate due to
(33). This numerical result can be explained intuitively. As the 1f(6) term inside the shape factarin Eq. (35). Hence
decreases, the radius of the drop incredteseep the vol- for sufficiently small g, the interfacial energy will always
ume constantand in addition the liquid edges pull away beat the electrical energy, the total energy will go to infinity
from the fixed electrodéas shown in Fig. Pthis means that as@ goes to zero, and s¢=0 can never be an energy mini-
the ions in the liquid have to travel a longer distance to gemum, no matter the applied voltage.

from the electrode at the top to the solid at the bottom. Thus

the effective resistance of the liquid increases as contacy .\ ra-1 ANGLE SATURATION MODEL VERSUS

angle decreases. For greater liquid resistivitipsthe resis- EXPERIMENTS

tance first starts to increase appreciably at larger contact
anglesé. The experimental setup is as shown in Fig. 2. For the

We note that even a small amount of liquid resistanceexperiments cited here, the insulating dielectric layer con-
implies that it is not possible to drive the contact angle tosists of either a single layer of Teflon or a double layer of
zero with an applied voltage of any size. For a fixed volume,Teflon and silicon dioxidédsee Fig. 1R Silicon is used for
the interfacial area, and hence the energy, of(Bf). goes to  the bottom electrode, and a metal wire is employed for the
infinity as contact angle goes to zero at a rater(#) top inserted electrode. More experimental details can be

Experimental Data for Four Different Devices Contact Angle versus U for Experiment and Theory

140 v - v v 140
% === THEORY (matched): Ao = 100
i g.gz ”"'TT:M"’ 0-1pm:SI02 | | = - Theory (High liq resistance): Ao=50
130} -> um “etlon 4 130 . —. Theory (Low liq resistance): Ao = 350
~5- 1.6 um Teflon . — Young-Lipp (no resistance): Ao =eo
—0— 0.02 pm Teflon, 1um SiO2 *

[in degrees]

6 [in degrees]
0

60 .

20 40 60 8 100 120 0

1 2
Applied Voltage [V] Electrowetting Number U = £ \l;3 /h v, "

FIG. 13. Left: Measured contact angle vs applied voltage for four different Teflon/silicon oxide coatings. Right: The same data is re-plotteteagainst
nondimensional electro-wetting numbgr= e V?/h Yig - The thin solid line shows the Young—Lippmann prediction. The two dashed lines show our theory for
a low and high liquid resistance. The thick solid line shows our prediction when we take the resistandg,#ati@0. Since for our experiment¥R
~104, this corresponds to a liquid resistivity 10times smaller than the solid resistivity. We have not yet been able to meAseseerimentallywe have
to measure the resistance across the solid and in the JiguidA,= 100 is of the right order of magnitude for our high resistance dielectric coatings.
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TABLE |. Summarizes the examples of Sec. lll. For each physical effect: column two lists the energy associated with that effect; column three shows the
resulting term that appears on the right-hand side of Young’s equation; and column four gives the relevant nondimensional number. For exaiople, the ra
between surface tension and gravity forces is given by the bond nuBibéthere are many competing effects, then each effect will enter with a size
corresponding to its nondimensional number.

Physical Resulting energy term: Term on right in Nondimensional
effect E(R,6,p1,p2, . ..)= Young: cosf=. .. number Comments
Interfacial (71s~ Vg ArsT 71gAlg cosf=-T Yis~ Ygs Exactly recovers
energy see Eqgs(8), (9), (10) I'= Yig Young'’s equation
2
Gravity R4Q92—7T[3+C050]Sin6 9 _po0sf_cosd 1 B— R°¢g Usually small
3 2 3 12 4 Yig
) i e V2A, €V?
Dielectric - S—_ 3 R2rsirfe 1 e V2 Recovers the
solid 2h 2h +3U U= Lipp—Young Eq
see Eqs(16) and(17) hyyg :
2 2
lon layer _9AVa >_ €1As| 2hpés —1UxaD _Mo€s Is negligible,
capacitance 2Np 2\p hE| <3UX he Il see Sec. IVA4
V4 voltage across ion layer very sma
Dielectric
liquid _1 2 1, V2 1
a 26RVa4el 6) +2Wh(0) w= = Note the= line
See Eq(22), Fig. 5 for b, see Eq(24) Ryig R
tension inW
Liquid EsA|s( \Vi )2 Not found explicitly, — _psh Liquid resistance leads to
- SN Y o= :
resistance 2h |\ 1+ Rig /R see Sec. IVC4. - |:r|gR;0 contact angle saturation
eR?VZ
T a(6,A,/R)

found in Moonet a

|24

Experimental results are shown on the Sec. Il A); but it further allows the inclusion of any other

left of Fig. 13. Results are plotted for four different coatingsenergy termgdue to gravity, capacitive effects, the double

as contact angle versus voltage.

sional electro-wetting numbeltrJ:esVZ/h«y,g of Eq. (35),

layer, etc). Specifically, we have found a simple and inter-
The first step is to re-plot this data against the nondimenesting link between energy scalings and the associated terms

in Young’s equation. Any physical effect that gives rise to a

then, as seen on the right of the figure, all the data essentiallg<R* energy size dependence, will giveR{™? term in

fall on a single master curve. The theory we have developeoung’s equatior(see Sec. Il ¢

in the preceding sections predicts this master curve. We are b. Summary of physical exampieEable | summarizes
able to match all the data if we take a solid/ liquid resistancehe examples of Sec. IIl.

ratio of A=100. Since the liquid radius in our devices is on

c. A triple-line force balance is insufficientuch of the

the order of 10000 times greater than the solid thickiess early literature analyzed surface tension by phrasing a force

this corresponds to a liquid/solid resistivity ratio /pg

balance at the triple line onlgsee Fig. 14 The limitation of

~107%: this is all that is necessary to cause a 75° contacthis viewpoint has been recognized in some recent
articles>%2® Essentially, if we have internal bulk forces as
occur in the case of gravitjthe simplest exampleor be-
cause of internal electric fields such as the one shown in Fig.

angle saturation.

VI. RESULTS SUMMARY

a. Minimum total energy and Young's equatigll the

4, then we must balance the bulk volume forces against the

interfacial effects. To do so, one must either consider the

results in this article are based on a minimum energy frameforces everywherénot just at the triple lingor one must
work. This in itself is not new, see Chap. 10 in Probst&in,

and Refs. 15, 16, and 26 for example. However, we have
made a careful effort to extract as much information from the

energetics framework as is possible. We have explicitly in-
cluded size dependence in the energy minimum formulation,

Y

AN

and have found an analytic relation between the change in

contact angledd and the change in radiu$R necessary to
keep the liquid volume constafgee Eqs(2) and(4)]. This
leads to Eq(6) which is in fact exactly Young’s equation if
we consider the energy due to interfacial effects ofslye

inside the liquid.

FIG. 14. The left diagram shows a force balance at the triple line only. This
model cannot capture the effect of internal for¢slsown schematically on

the righy such as gravity or the forces due to internal electric fields. For
example, the electric field of Sec. IV B, Fig. 4 will create forces everywhere
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minimize the total system energy as we have done here. how the electrical energy changes with contact angle and this
d. Only consider gross liquid shap&Ve have ignored requires numerical solutions of E(28) for varying droplet

local details of the liquid shape, meaning we do not accounshapes.

for liquid pinching at the top electrode or for the details of f. Liquid resistance leads to contact angle saturation:

the shape at the three phase line. Instead, we have assigniédr our devices, we have found that including a small real-

two numbersR and § which parametrize the gross shape ofistic amount of liquid resistance is sufficient to explain ob-

the liquid drop as shown in Fig. 1. For all the different physi- served contact angle saturation data. Basically, the shape de-

cal scenarios discussed in Sec. lll, at the end we have alwaygndent resistance of the liquid drop leads to lower energy

expressed the total energy in terms of these two numberstorage in the solid dielectric at small contact angles. Section

have then relate® to 6 through Eq.(4) [or more directly 1V C5 provides a detailed analysis. Section V shows a com-

through Eq.(33)] and have then found the minimum energy parison with experimental data.

contact angled. Our basic point is that including the details

of the shape in the vicinity of the triple line is computation-

ally expensive, difficult to check experimentally, and, at least CKNOWLEDGMENTS
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two parameter®k and 0, we consider a drop whose shape

is described by a longer list of parameters

=(ry,f,, ...,ry). For example, if the drop is rotationally APPENDIX A: MATHEMATICAL DETAILS

symmetric,r; could be a list of points that define the liquid/

! ; ) Equations(8), (9), and(12) are all derived by partition-
gas curve in the vertical plane. If the droplet is not symmet-mg the spherical drop into infinitesimally thin horizontal

ric, then ther;’s will define a discretized surface. To recast yig) of varying radii and performing an integration over all
the analysis of Sec. Il A, we find the eneryn terms of this .0 qisks.

shape vector and physical parameters. This involves The double layer capacitive energy ratio result of Sec.
solving Maxwell’s equations as a function of the shap&e |\ a4 is proved as follows. The Gouy—Chapman double
then minimizeE(r,p) with respect ta, subject to a constant layer theory outlined in Hiemenz and RajagopafaSec.

volume constraingv (r)/or =0, to find the minimum energy 17 g can be solved analytically for the potential in the

. . . o A
shaper®. Thus_ our ser_mgnal_ytlc formulauon IS r_eplaced by Adouble layer. Specifically, using normalized (variables
purely numerical optimization. This formulation recovers

droplet pinching at inserted electrodes, and it predicts the 1-expV/2) -
shapes of drops squashed between two planar electrodes. De- I-—e

tailed shape results for such cases will be presented in future  ¢(y)=2In 1+exp(Y|/2) ' (A1)
publications. 14 1—expV,/2) o
e. Numerical solution of the electrostatic PDEs plus 1+expV,/2)

scaling argumentsFor cases that involve electric fields, we R

have solved the Maxwell's PDEs that give rise to the elecwWhere¢=2zF/RTé is the normalized potential in the double
trostatic energy terms. Moreover, in each case we have fir$ayer,§/=y/)\D is the normalized vertical distance away from
used a scaling argument to elucidate how the energy depenttse y=0 wall, A\p= ', RT/2F?Zz%c, is the Deybe length

on parameters such as drop radRjsnsulating solid height  scale,(y=0)=V, is the normalized potential at the wall,

h, applied voltage/ and material parameters like the conduc—’,;mdz,p,R,T,CO and e, are the charge number, Faraday con-
tivity and dielectric constants. Only after we have extractedstant, the gas constant, the far field ion concentration, and the
all possible parametric dependencies, do we numericallgielectric constant of the liquid. Differentiating EA1)
solve Poisson’s E(28) for the 6 shape dependence. It turns \yis, respect toy gives the nondimensional electric field in

out that the scaling argumentthe liquid electric field goes A o ~
as the voltage over radius, the liquid volume scales as radiutge liquid &= —d¢/dy. Specifically, at they=0 wall

cubed, the solid volume scales as radius squared times the _ _ d¢ .

height of the solidl can provide a tremendous amount of ~ Ej(y=0)=— d—A|§:o=—2 sinh(V,/2). (A2)
information. In fact, scaling arguments alone are sufficient to y

show when line tension terms do and do not exist. Scalindh Sec. IVA4 we have a solid dielectric layer under the
arguments reveal the underlying nondimensional numberkquid ion layer. This layer has a dielectric constagtand a
that capture the relative strength of the different physicaloltage dropVs. The total voltage drop across the liquid and
effects, and scaling arguments can also be used to take fulhe solid must equal the applied voltage=V¢+V,. More-
advantage of a limited set of numerical solutions. Howeverpver, the electric field must satisfy the standard jump condi-
to predict the details of thé shape changes we need to know tion e;E¢= ¢ E,;, Feynmart® Vol. Il, Chap. 10, whereE is
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the electric field in the solid ag=0. If the dielectric has
heighthg, then by virtue of the fact theEs=Vs/hg we re-
cover (after normalizatioh

GS/E| ~

ho/hg 'S

This can be inverted and then bounded from above

— 2 sink(V,/2) = (A3)

ele .

ele .
Vs
2hg/\p

2hS/)\DV)’
(A4)

whereV is the voltage applied across the ionic double laye
and the solid. The inequality follows frodds=V—V,<V.
The energy of a single chargdocated at heighy above the
wall is

V,=2sinh?

)sz sinh‘l(—

RT.
U(y)=ezE¢(y/>~d). (A5)

wheree=1.6x10"° C is the elementary unit of charge. The
charge per unit volume in the double layer is

n(y)=Nalc(y)—c_(y)]=Naco[exp — ¢) —exp ¢)]

= —2NaC, sinh(y), (A6)

whereN, is Avogadro’s number. Multiplying Eq$A5) and
(A6), and simplifying the dimensional coefficients, gives the
net capacitive energy stored in the ionic double layer as

1¢ RT\? (= . . -
EDLcap_EE E fO —2d>(y)S|n d’(y) y. (A7)
The key point is that usingb(y) from Egq. (A1) and the
upper bound of Eq(A4) it can be shown that the integral in
Eq. (A7) is bounded by é\pV/€hy)?. Thus the capacitive

r

Shapiro et al.

solution of the PDE and boundary conditions presented in
Sec. IV C 2, and then showing thétis also a valid solution.
The original liquid solution ¢, is multiplied by V and
stretched by a factor dR in all three directions. A stretched
and multipled field still satisfies the necessary Laplace equa-
tion V2¢,=0 (within the liquid regionp=p, is constant and
may be moved outside the gradient opergttite voltage at
the top of the drop goes fromp(top)=V=1 to ¢(top)

=V, the edges of the liquid solution are moved frétw 1

to R and V¢|~ﬁ remains zero at the liquid/gas interface.

Likewise, the solid potential fielghs only has az component
(approximately, so if it is stretched byR in the x,y direc-
tions and byh/h in the z direction then it still satisfies
V2= 3%/ 9z°=0; thex,y scaling ensures that points just
above and below the liquid/solid interface move together,
and the multiplication of bothp, and ¢4 by V means that
#(X,y,z) remains continuous across the 0 liquid/solid in-
terface; finally ¢(bottom)=0 remains true. So the scaled
field ¢, is a permissable solution in the liquid region, apg

is a permissable solution in the solid region; it only remains
to show that the liquid/solid matching conditigndde, /dz
=pd¢psloz still holds. A stretching and magnifying of the
potential fields creates the following scaled electric fields:

E(X!yvz)

Vo—al Xy 2| . o
Vo (Xxy,z)= §V¢|’ R'RR M the liquid
B FV_[,Af x y hz| .
Vos(x,y,2)= qubs' RN the solid.

(A8)

Hence the liquid/solid electric field jump condition is now

energy stored in the ionic double layer is much smaller tharyritten

the capacitive energy stored in the solid dielectfg; ¢,
<(es\p/€hg)Epgs. This is the result stated in Sec. IVAA4.
Numerical solutions of Maxwell's equations used in

b oo iE 0,
Ps7gz h 5z Moz

R gz (A9)

Figs. 4, 5, 7, 8, 9, 10, 11, 12, and 13 are carried out as - L o
follows. Poisson’s equation are phrased in cylindrical coorBut pgi¢, /dz=p,dps/dz with ps/p=A, thus d¢g/iz

dinates with an assumed rotational symmetry about zhe
axis: V2o(r,a,z)=d?¢plar?+1lr gl or + 8?1 dz%. In all
cases, we tak&¢>side§ﬁ=0 wheren is the outward unit
normal at the liquid/gas or liquid/solid boundary. This con-
dition assumes that the dielectric constant ofegiis much
smaller than that of the liquid, or that of the solides.

=Ad¢, |9z, substituting this into equatiofA9) gives, after
rearrangement and cancelation of tlie /9z term, A
=psl/p=psh/h/pR. So the last necessary boundary condi-

tion is still satisfied wherd is chosen in this way.
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