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Equilibrium behavior of sessile drops under surface tension,
applied external fields, and material variations
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This article describes the equilibrium shape of a liquid drop under applied fields such as gravity and
electrical fields, taking into account material properties such as dielectric constants, resistivities, and
surface tension coefficients. The analysis is based on an energy minimization framework. A rigorous
and exact link is provided between the energy function corresponding to any given physical
phenomena, and the resulting shape and size dependent force term in Young’s equation. In
particular, the framework shows that a physical effect, such as capacitive energy storage in the
liquid, will lead to 1/R ‘‘line-tension’’-type terms if and only if the energy of the effect is
proportional to the radius of the liquid drop:E}R. The effect of applied electric fields on shape
change is analyzed. It is shown that a dielectric solid and a perfectly conducting liquid are all that
is needed to exactly recover the Young–Lippmann equation. A dielectric liquid on a conducting
solid gives rise to line tension terms. Finally, a slightly resistive liquid on top of a dielectric, highly
resistive solid gives rise to contact angle saturation and accurately matches the experimental data
that we observe in our electro-wetting-on-dielectric devices. ©2003 American Institute of
Physics. @DOI: 10.1063/1.1563828#
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I. INTRODUCTION

The shape of a liquid drop on a surface is determined
the composition of the liquid~solvent, and ionic and surfac
tant solutes! and by the composition and morphology of th
underlying solid. When an electric potential is applied acr
the liquid drop and the solid substrate, ions and dipoles
distribute in the liquid, in the solid, or in both depending
the relative material properties. This redistribution can ca
a hydrophobic surface to behave in a hydrophyllic mann
In such a case, the liquid drop will change shape under
applied electric potential.

This electro-wetting phenomenon can be used to cre
fluid flow. 1–10 In practice, electro-wetting-based actuation
aqueous solutions is limited by the onset of current fl
through the substrate and the solution, which leads to che
cal oxidation, the reduction of solutes, and to electroly
~bubble formation!. It has recently been demonstrated th
fluid actuation can be achieved without electrolysis by co
ing the conductor or semiconductor substrate with
dielectric.1,3,6,10The dielectric serves both to block the ele
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tron transfer and to provide a hydrophobic surface that
ables large changes in contact angle. This electro-wetting
dielectric ~EWOD! driven actuation has been used to cre
droplets from reservoirs, as well as to cut, join, and m
drops on planar surfaces or in channels.3,10 Applications of
EWOD include microfluidics and biofluidic sensors and d
vices.

In order to design and control such devices, we requi
accurate models of the underlying physics. First, we n
some way of deciding which physical mechanisms are do
nant in the devices: is the ionic double-layer more or le
important then the dielectric energy stored in the liqui
What percent of the energy is being stored/dissipated in
liquid bulk, solid bulk, and at the interfaces? Second,
need to understand the engineering limits: why does con
angle saturate? What limits droplet switching speed? T
article addresses some of these needs.

A. Background

Prior modeling results are based on the classical work
Lippmann 11 and Young ~see, for example, Chap. 10 i
Probstein12!. More recent articles include Refs. 1,7,10,13
25. In particular, the total energy minimization framewo
proposed by Digilov26 is similar to our starting point. How-
il:
4 © 2003 American Institute of Physics
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ever, our method of analysis and physical interpretation
different; plus, we go on to numerically solve the surfac
energy/electrostatic minimum energy conditions and
study the properties of the solutions.

Due to its engineering importance, there have bee
large number of articles focused on electro-wetting limiti
phenomena: why does the contact angle cease to change
some critical voltage is reached? To date, some of the
posed physical mechanisms include: electrolysis,24 contact
line electrostatic/capillary instabilities for pure water,6 ion-
ization of air in the vicinity of the drop edge,6 charge
trapping,5 and a proposed zero surface/liquid energy lim4

Charge/ion adsorption from the liquid to the solid surfa
and its effect on the solid/liquid surface energy, is anot
possible source of contact angle saturation.27,28 The match
between contact angle saturation theory and experimen
often inconclusive, and/or the model parameters have b
chosen to fit one set of data but have not been valida
against a different independent set of data.~A notable excep-
tion is the work of Verheijen and Prins.5 These authors show
good agreement between experiment and theory and
present a second independent test to show that charge
ping is responsible for contact angle saturation in their
vices.! It is possible, in fact likely, that different limiting
phenomena are important in different devices: Vallet, V
lade, and Berge6 see luminescence in their devices and arg
that gas ionization is one of their dominant phenomena.
do not see any luminescence in our devices but we have
able to accurately predict contact angle saturation for m
tiple devices, without fitting, by including the small electric
resistance found in the liquid.

There have also been a number of studies about the e
trical and chemical details at the interfaces: Lyklema29 pre-
sents a comprehensive discussion of ion double-layer th
ries; Chou30 presents an analytic solution for the liquid/g
shape right at the triple point under an applied potent
Zimmerman, Dukhin, and Werner31 provide an experimenta
and theoretical treatment ofz potentials and solid/liquid con
ductivities due to ion adsorption; and Koopal and Aven32

provide an excellent description of adsorption kinetics.
do not consider such fine-scale spatial details here.

B. Current approach

Our analysis is aimed at quantifying how different phy
cal effects~gravity, electrical resistance, ionic double laye!
influence the electro-wetting phenomena. In this article
are only interested in those physical phenomena that in
ence voltage induced shape change. Essentially, we
some way of deciding which physical effects are import
and which are negligible. We do this by finding the ener
associated with each effect, by minimizing the energy to fi
equilibrium conditions, and by rigorously converting that e
ergy minimum into a Young-type equation that describes
change in droplet shape as a function of applied voltage
other physical parameters. This lets us compare the rela
sizes of different effects. In this sense, our analysis is sim
in spirit to Digilov.26 However, when necessary, we phra
and solve Maxwell’s partial differential equations to find t
Downloaded 04 Jan 2007 to 129.2.70.104. Redistribution subject to AIP
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electric fields, and thus the stored energies, inside the s
and liquid materials. Moreover, we have been able to de
a rigorous equation which takes any arbitrary energy te
and analytically gives back the corresponding, siz
dependent, force term in Young’s equation.

Section II A presents the mathematical framework th
takes the energy term for any physical effect and compu
the resulting force term in Young’s equation. Sections III
and III B verify this framework for two simple example
where the answer is known and is straightforward, resp
tively. New ground is covered in Secs. IV A 4 and IV B
culminating with the contact angle saturation example
Sec. IV C.

The basic tenets of our analysis are: a total energy m
mization, a phrasing of Maxwell’s electrostatic partial diffe
ential equations~PDEs!, an analytical extraction of how the
PDE solutions change with analytically accessible para
eters, and a numerical solution of the remaining, normaliz
shape-dependent PDEs to capture parametric depende
that are not available analytically.

a. A total energy minimization approach with a consta
liquid volume constraint: We write down the energy due t
liquid/gas, liquid/solid and solid/gas interfaces plus the e
ergy stored in the bulk due to applied external fields such
gravity and the imposed electrical potentials. The energ
minimized subject to the constraint that the liquid volum
must remain the same. This gives rise to a Young-type eq
tion that can account for any physical effects and which
cludes droplet size dependence.

Although the link between energetics and Young-ty
formulations has been explored partially~see, for example,
Chap. 10 in Probstein12 and Refs. 16 and 15! this argument
has traditionally been applied for a pure translation of
liquid/gas front: no change in droplet size is considered. T
means that the radiusR does not appear in the formulation
and so all the size information is lost. Using this approach
is fundamentally impossible to recover size dependent te
like the ‘‘line-tension’’ 1/R-type term debated in the litera
ture. This term is usually included based on phenomenolo
cal considerations, not derived from first principles, hen
the debate. Our analysis includes variations in bothR andu
and analytically recovers the size dependent terms. T
given the energy due to any physical effect, we can anal
cally write down the corresponding force term in Young
equation. In particular, we can state when line tension te
exist, and we can derive these terms from physical first p
ciples.

b. Solution scalings for the electrostatic partial differen
tial equations (PDEs): In order to find the electrical energies
we first find the PDEs and the relevant boundary conditio
that describe the electric fields inside the liquid and so
phases.~Typically, Maxwell’s equations are sufficient fo
phrasing the right set of PDEs. But there are cases where
consider other coupled effects such as the thermal diffus
effects found in the ionic double layer.! Before solving the
resulting PDEs, we perform an analytic scaling analysis
extract as many parametric dependencies as possible. B
doing, we find how the solutions, and also the electrical
ergies, scale with system parameters such as the applied
 license or copyright, see http://jap.aip.org/jap/copyright.jsp
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ageV and liquid radiusR, and with intrinsic material coeffi-
cients such as the resistivitiesr and dielectric constantse. In
most instances, this type of analysis is sufficient to reveal
underlying nondimensional numbers that determine
strength of the various physical phenomena. For exam
the Bond numberB5rgR2/g lg which determines the size o
gravity terms compared to surface tension effects can be
covered from a scaling analysis.

c. Solving the shape-dependent normalized PDEs: Once
we have extracted the dimensional parameters such as
voltages, radius, heights, dielectric constants and resis
ties, it remains to solve the PDEs for the shape, oru, depen-
dence. This is done numerically.

d. Finding the energy minima: From the scaling analysi
and the shape-dependent numerical results, we can find
total electrical energies as a function of the applied fiel
material coefficients and droplet shape. By minimizing t
energy, we can find the contact angle as a function of par
eters. At the end, the result depends only on a few dim
sionless numbers. In the case of gravity, the contact a
depends on the nondimensional surface tension numbeG
and the Bond numberB. In the case of a resistive liquid ato
a dielectric solid, the contact angle depends on the sur
tension coefficientG, on the insulating solid electro-wettin
numberU, and on the nominal ratio of solid to liquid resis
tanceĀo .

e. Predict key phenomena, including line-tension a
contact angle saturation: This article essentially performs
careful engineering analysis of the bulk electrical and surf
tension properties of a sessile drop. Using this approach
have been able to rigorously show that a dielectric liq
leads to 1/R line tension terms, but a conducting liquid do
not. We have been able to assess the electrical resis
capacitive (RC) charging time constants, and we have be
able to quantitatively predict contact angle saturation in
devices. It will be shown that saturation, at least in our
vices, is caused by the small amount of electrical resista
found in the liquid. This explains why we continue to s
essentially the same contact angle saturation behavior
different dielectric coatings of different thicknesses: the sa
ration is basically fixed by the net resistance of the liqu
which depends on its sizeR, shapeu, and its intrinsic resis-
tivity r l .

II. ASSUMPTIONS AND THE MATHEMATICAL
FRAMEWORK

Our attention is restricted to a single, approximate
spherical, sessile drop in equilibrium, under applied exter
fields ~such as gravity and electric potentials!, with variable
material properties~solvent, ion type and concentration, an
the dielectric constants of the liquid and solid!. For this case,
the modeling framework and underlying assumptions
listed below.

a. An energy minimization approach: We phrase all
physical effects in terms of energies~not forces!. From a
tautological standpoint this is attractive because all kno
forces are derivatives of a potential energy~see Vol. I, Chap.
14, Sec. 4 in Feynman33!. Nonconservative forces, which ar
Downloaded 04 Jan 2007 to 129.2.70.104. Redistribution subject to AIP
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not written as the derivatives of a potential energy, are u
when it is not possible to track the details of all the under
ing conservative forces. An energetics framework is also
vantageous from a practical standpoint. It is not at all cl
how ion diffusion gradients give rise to forces at the trip
phase line, but it is~relatively! straightforward to find the
potential energy associated with an ion distribution field, a
to then perform the energy differentiation described in S
III to find the associated term in Young’s equation.

b. Drop shape: The drop is assumed to be essentially
perfect sphere truncated at the solid plane, as shown in
1. High gravitational or electrical forces can squash a d
but we assume that the applied external fields are sufficie
small that this distortion is negligible. We also neglect a
droplet deformation right at the triple line because we
only interested in the bulk, not local, shape of the drop. T
means that the shape of our drop can be uniquely descr
by two numbers: the radiusR and the contact angleu. After
we have solved for the electric, gravitational, and other fie
as a function ofR andu, the liquid drop has only these tw
degrees of freedom left. The constant liquid volume co
straint tiesR andu together and thus reduces the problem
a single degree of freedom.

The methods in this article can be extended to n
spherical drops and puddles. In such cases, the spirit of
development is exactly the same, but the associated m
ematics needed to find the larger number of parameter
describe the minimal energy liquid shape is more sophi
cated. See Brakke34 for how to compute complex minima
energy surfaces.

c. Equilibrium: Thus far we have only addressed th
equilibrium shape of the liquid drop under applied fields a
material variations. To include droplet dynamics, which a
important for issues such as maximizing droplet switch
speed in the electro-wetting devices described in C
et al.,35 two extensions will be required.

First, we will have to consider the time varying nature
the electric fields. This is done partially in Secs. IV C 1 a
IV C 2 where we find that our resistive-capacitive (RC)
charging time constants are on the order of millisecon
Second, and more importantly, it will be necessary to inc
porate our results into fluid simulations that solve the lo
Reynolds limit of the Navier-Stokes equations for two-pha
flows. Two points are important. A common concern is t
validity of the continuum assumption~see Beskok36 for a
good overview! which is not an issue in our micromete
sized devices. Also, there is an inconsistency between
face tension contact angle and viscous no-slip fluid bound

FIG. 1. Spherical drop geometry is parametrized by radiusR and~apparent!
contact angleu.
 license or copyright, see http://jap.aip.org/jap/copyright.jsp
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conditions:15,17,19,37if both boundary conditions are enforce
and if the fluid is a realistic fluid where discontinuous velo
ity fields are not possible, then the triple line cannot mo
Resolution of this issue is an active area of research.

d. No roughness or hysteresis: No surface roughness e
fects are included in the current model. The contact an
hysteresis that arises from surface heterogeneities or ro
ness can be modeled by energy considerations,21 and thus
can be incorporated into the current framework.

e. No evaporation: The liquid volume of the drople
shown in Fig. 1 is assumed to remain constant. If we wan
to include the liquid volume change associated with eva
ration, we would need to formulate the energies associa
with phase change and let volume become a variable ins
of a fixed parameter.

Rigorous conversion from energy minimum to the
modified Young’s equation

This section presents the mathematics for converting
sessile drop potential energy function~including energies for
effects such as ion concentrations, electric fields, and m
rial variations! into a Young-type equation. This link is rig
orous and exact: there are no approximations associated
the conversion. All approximations reside within incomple
knowledge of the energies, or within the assumption that
drop is a perfect sphere completely described by radiusRand
contact angleu. In Sec. III we will find the total potentia
energyE(R,u;p) of the drop for different physical scenario
At the end of all computations, this energy will depend
the drop radiusR, the ~apparent! contact angleu, and rel-
evant system parametersp such as applied voltageV, dielec-
tric constantse, and es , and nominal liquid ion concentra
tions co .

At equilibrium, the drop will assume a shapeR,u that
minimizes this energyE. This means that the derivative o
the energy with respect toR andu is zero

dE5F]E

]R
~R,u;p!GdR1F]E

]u
~R,u;p!Gdu50. ~1!

Equation~1! says that at an energy minimum, the infin
tesimal change in energy due to shape variations mus
zero, and that there are two possible shape variations: on
R and the other inu. It is not possible to changeu without
also changingR; if u increases in Fig. 1,R must decrease to
keep the drop volume constant~neglecting evaporation!. The
drop volume is given by

v~R,u!5pR3S 2

3
2

3 cosu

4
1

cos 3u

12 D . ~2!

Since volume is constant, its variation must be zero, hen

dv5F ]v
]R

~R,u!GdR1F]v
]u

~R,u!Gdu

5F3pR2S 2

3
2

3 cosu

4
1

cos 3u

12 D GdR

1FpR3S 3 sinu

4
2

sin 3u

4 D Gdu50. ~3!
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Solving for dR in terms ofdu yields

dR5Rq~u!du5RS 2
2 cos2~u/2!cot~u/2!

21cosu Ddu, ~4!

where q(u)52@2 cos2(u/2)cot(u/2)#/@21cosu#. A similar
equation is derived in Decamps and De Coninck.20 Using Eq.
~4!, Eq. ~1! can now be rewritten to show how the ener
changes with contact angle

dE

du
5F]E

]R
~R,u;p!GRq~u!1F]E

]u
~R,u;p!G50. ~5!

In order to get the traditional Young termg lg cosu to appear
in this equation, it is necessary to pre-multiply Eq.~5! by
2(21cosu)/2pR2 sinu. This term is strictly negative for al
possible contact angles 0,u,p so there is no division by
zero. Thus

S 2
21cosu

2pR2 sinu
D dE

du

5S 2
21cosu

2pR2 sinu
D S F]E

]R
~R,u;p!GRq~u!

1F]E

]u
~R,u;p!G D50 ~6!

is exactly Young’s equation, although written in a new wa
In the special case whenE only includes the energie

due to liquid/solid, liquid/gas, and solid/gas interfaces w
constant surface tension coefficients, as in Sec. III A, t
equation becomes exactlyg lg cosu2(ggs2g ls)50. How-
ever, this formulation can handle any potential energy fu
tion E(R,u;p). If we include additional effects such as ele
trical energy in the solid, electrical energy in the liqui
gravitational terms, or ion concentration effects, then Eq.~6!
will rigorously produce additional terms in Young’s equatio

III. TWO EXAMPLES AND THE SIZE DEPENDENT
TERMS

The first example is a drop that only has energies due
interfaces. The purpose of this example is to verify t
framework of Sec. II A and to show that we exactly recov
the traditional Young equation in this simple case. The s
ond example includes gravity. This example shows how b
effects are included in the analysis, the electrical fields
Sec. IV are included in the same way, and it demonstra
how scaling arguments can be used to extract the rele
nondimensional parameters. We close this section with s
section III C which converts size dependent energy ter
into the corresponding size dependent terms in Youn
equation. This subsection shows when 1/R line-tension terms
are active.

A. Interfacial potential energy

We start with a trivial example. If we only consider th
potential energy due to the solid/liquid, solid/gas, and liqu
gas interfaces, and if we assume the surface tension co
cients are constant, then the sessile drop interfacial pote
energy is given by Probstein12 in Chap. 10
 license or copyright, see http://jap.aip.org/jap/copyright.jsp
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Eint5~g ls2ggs!Als1g lgAlg , ~7!

where the subscriptsl ,s andg denote liquid, solid, and ga
phases, respectively,Ai j is the interface area~so Alg is the
area of the liquid/gas interface!, andg i j are the surface ten
sion coefficients with units of energy per area. The solid/
coefficientggs appears with a negative sign because ifAls is
increased by some amount, thenAgs must be decreased b
the same amount.

For the drop shown in Fig. 1, it follows from purel
geometrical reasoning that

Als~R,u!5pR2 sin2u, ~8!

Alg~R,u!52pR2~12cosu!. ~9!

In consequence, the interfacial potential energy is

Eint~R,u!5R2@~g ls2ggs!p sin2u1g lg2p~12cosu!#.
~10!

As expected, the interfacial potential energy term scales w
drop radius squared. If we plugEint into the conversion de
scribed by Eq.~15!, then, after some half angle trigonometr
identities, we exactly recover the traditional Youn
equation12 g lg cosu2(ggs2g ls)50.

B. Gravitational potential energy

We now consider the potential energy due to grav
This case is presented because it demonstrates some o
key concepts, such as solution scaling, for a simple and
tuitive example. In reality, for most practical microfluid
devices, gravity is negligible.

It is possible to find the form of the gravitational pote
tial by a simple scaling analysis.

A liquid element of volumeDv, of density%, at height
, above the solid reference plane, will have a potential
ergy due to gravity ofDEgvty5mg,5%g,Dv, where m
5%Dv is the mass of the element andg59.81m/s2 is the
acceleration due to gravity. The total potential energy due
gravity is the integral over all the liquid elements within th
drop shape. For a drop of radius one, the integral of%g,dv
over the drop shape will give some function ofu only:
Egvty(R51,u)5agvty(u). If we increase the size of the dro
by a factor ofR but keep the shape, meaningu, the same,
then the integral will change by a factor ofR4 – the ‘‘num-
ber’’ of elements remains the same, but there is one facto
R for the change in, and three factors ofR for the cubic
change indv. Hence the potential energy of the drop due
gravity must be

Egvty~R,u!5R4agvty~u!, ~11!

whereagvty(u) is the shape form factor. ThisR4 dependence
will create anR2 term in Young’s equation:g lg cosu5(ggs

2g ls)1R2b(u), as described by Eq.~15! in Sec. III C be-
low.
Downloaded 04 Jan 2007 to 129.2.70.104. Redistribution subject to AIP
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To actually find the form factoragvty , we carry out the
shape integration. Namely

agvty~u!5E
p2u

p

2p%g@cosf1cosu#sin3~f! df

5
2p

3
%g@31cosu#sin6~u/2!. ~12!

As necessary, this factor is zero whenu50 ~total spreading
corresponds to an infinitely thin, infinitely large puddle a
means no potential energy due to gravity! is maximal when
u5p ~no wetting!, and is strictly positive for allu in be-
tween.

Combining this result with the Eqs.~10! and ~11!, the
potential energy due to the interfacial and gravitational ter
is

E~R,u!5R2@~g ls2ggs!p sin2u1g lg2p~12cosu!#

1R4%g
2p

3
@31cosu#sin6~u/2!. ~13!

The interfacial term is at a minimum whenu is equal
to the no gravity equilibrium contact angle. The gravi
term is at a minimum whenu50 and so it tends to flatten
the drop: its effect is more pronounced for larg
drops where the Bond ratioB5R4%g/R2g5R2%g/g
is substantial. A standard calculation shows that for
0.1 mm sized drop of water, the Bond number
approximately (1024 m)23(103 kg/m3)3(9.81 m/s2)/(g lg

57.331022 kg/s2)50.0013, which means that the gravi
potential energy is only 0.1% of the interfacial energy.

Using Eq.~15! derived below, and dividing through b
g lg , the dimensionless Young’s equation for a liquid dr
with gravity is

cosu2S ggs2g ls

g lg
D1S R2%g

g lg
D Fcosu

3
2

cos 2u

12
2

1

4G50.

~14!

C. Rka„u… energy terms lead to RkÀ2b „u… Young
terms

As shown in the two examples above, many poten
energy terms scale asE(R,u)5Rkak(u) whereRk is the size
dependence andak is a shape factor. Interfacial energy term
in Sec. III A scale asR2a2(u), gravity terms scale as
R4a4(u) in Sec. III B, the conducting drop will have
R2a2(u) scaling ~Sec. IV A!, and the dielectric drop will
display aRa1(u) scaling~Sec. IV B!. Some physical effects
like the fixed electrode height resistivity effect of Se
IV C 4, will lead to energies that do not scale simply as po
ers ofR. But even in this case we can expand such terms
a power series inR, or we can just apply Eq.~6! directly
without the additional analysis described below.

Using Eq. ~6!, we see that aE5Rkak(u) energy term
gives a
 license or copyright, see http://jap.aip.org/jap/copyright.jsp
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Young’s equation term for aEk5Rkak~u! energy term

5S 2
21cosu

2pR2 sinu
D S ]E

]R
Rq~u!1

]E

]u D
5S 2

21cosu

2pR2 sinu
D S kRk21ak~u!Rq~u!1Rk

]ak

]u D
5Rk22S 2

21cosu

2p sinu D S kak~u!q~u!1
]ak

]u
~u! D

5Rk22bk~u! ~15!

contribution in Young’s equation.R4 energy terms~e.g.,
gravity! lead toR2 effects in Young’s equation,R2a2(u) en-
ergy terms~e.g., interfacial areas or insulating dielectric so
ids! reduce to pureu terms, andRa1(u) terms lead to 1/R
line-tension variations. This means that the conducting liq
drop in Sec. IV A whose electrical energy scales asR2 will
produce a Young’s equation with noR dependence. Howeve
the dielectric liquid drop whose energy scales asRa(u) will
have a line tension term, and the magnitude of this term
be determined by the energy derivation in Sec. IV B and
Eq. ~15!.

IV. THREE EXAMPLES WITH ELECTRICAL ENERGIES

Here we consider three examples that include electr
fields. A conducting liquid atop a dielectric solid is discuss
in Sec. IV A: this recovers the traditional Lippmann–Youn
relation. In this section we also address the role of the io
double layer. A dielectric liquid atop a conducting solid
analyzed in Sec. IV B: this case leads to a 1/R line tension
term. Section IV C considers a slightly resistive liquid atop
highly resistive dielectric solid this case recovers the con
angle saturation behavior we observe in our devices.
each example, we find the total potential energy, extract
nondimensional parameters, and find the dimensionl
modified Young’s equation.

A. Conducting liquid atop a dielectric solid

In bio-chip applications, the water will contain an appr
ciable number of ions and will be a good conductor of el
tricity: see Probstein,12 Sec. 2.5, for a relation between io
concentrations and the resistivity or conductivity of water.
prevent current flow, the dielectric coatings in our EWO
devices35 are designed to act as insulators. Thus, to a fi
approximation, the experimental arrangement in EWOD
vices can be described as a conductive liquid above an i
lating, dielectric solid. It will be shown that this conductin
liquid/ insulating solid case exactly recovers the Lippman
Young relationg lg cosu5@ggs2g ls1esV

2/2h#, but it does
not lead to contact angle saturation or any line tens
1/R-type terms.

Figure 2 shows the relevant geometry. Because the liq
is conductive, the potential at the solid/liquid interface
equal to the applied voltage:fsl5V. There are three source
of potential energy: the interfacial energy derived in S
III A, the dielectric energy stored in the solid, and the ene
stored in the externally applied charging source.
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1. Potential energy in the solid dielectric layer

For a dielectric solid element at location (x,y,z), of vol-
ume Dv, with local electric fieldE(x,y,z); the electrical
potential energy isDEde5

1
2(D•E)Dv. Here D is the po-

larazibility vector field: it is the induced dipole moment
the solid per unit volume, see Feynman33 Volume II, Chap.
10, Sec. 2. For an ideal dielectric, this moment is linea
related to the local electric field byD5esE wherees is the
dielectric constant of the sold. HenceDEde5

1
2esuEu2Dv. Ne-

glecting edge effects, the electric field immediately under
solid/liquid contact area isE52(0,0,V/h); it points straight
down with a strength equal to the applied voltageV divided
by the dielectric thicknessh. The electric field everywhere
else is zero as illustrated in Fig. 2. Thus1

2esuEu2dv must be
integrated over the volumev5hAls and this gives, togethe
with Eq. ~8!, the energy stored in the solid dielectric

Ede~R,u!5
1

2
esS V

h D 2

hAls5
esV

2

2h
pR2 sin2u. ~16!

If there aren solid dielectric layers, as opposed to the sing
dielectric layer considered above, thenes /h is replaced by
the net in-series capacitance per unit area 1/(h1 /e11 . . .
1hn /en).

2. Potential energy stored in the external charging
source

The basic reason this term has to be included is t
every time the drop shape changes, the charged volume
mediately under the solid/liquid contact area changes, an
packet of chargeDQ must be received from or pushed ba
against the fixed voltage source. This requires an amoun
work, or minus potential energy,W5VDQ52E. It follows
that the energy stored in the charge source is twice again
energy stored in the dielectric but with opposite sign. A ca
ful exposition of this result can be found in Vol. II, Chap.
Sec. 2 of Feynman33 and also in Verheijen and Prins,5 and so
it is not repeated. HenceEcs(R,u)52(esV

2/h)pR2 sin2u.

3. Total energy and the Young –Lippmann equation

Combining the interfacial energy of Sec. III A with th
dielectric and external source energy derived above, the t
energy for the conducting drop system is

FIG. 2. Left: Conducting drop atop an insulating dielectric layer of thic
nessh. The voltageV is applied between the bottom-most flat conducti
electrode and the electrode inserted into the top of the drop. Right: S
matic showing resulting dipole moments6 in the dielectric immediately
under the liquid/solid contact area; here the electric fieldE52(0,0,V/h)
points down as shown by the arrows. The electric field is zero everywh
else.
 license or copyright, see http://jap.aip.org/jap/copyright.jsp
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E~R,u!5R2F S g ls2ggs2
esV

2

2h Dp sin2u1g lg2p~12cosu!G .
~17!

Note thates is the dielectric constant of the solid, not th
liquid.

Equation ~17! is identical to Eq.~10! except thatg ls

2ggs has becomeg ls2ggs2esV
2/2h. Using the results of

Eq. ~15!, and dividing through byg lg to nondimensionalize
we exactly recover the Lippmann–Young relation

cosu2S ggs2g ls

g lg
1

esV
2

2g lgh
D50. ~18!

This equation contains no line tension 1/R terms because th
energy stored in the dielectric scales as the charged vol
in the solid, and this volume scales asAlsh;R2h. Sinceh is
constant, this stored energy behaves just like a liquid/s
interfacial energy term. To get a line tension term, it is n
essary to have a physical effect whose energy scales asR, not
asR2 ~see Sec. IV B!.

4. Effect of ionic double layer

There are two basic physical effects associated with
double layer. The first is the capacitive energy stored in
double layer: this effect is negligible in our devices. Lip
mann theory treats the ionic double layer as a Helmh
capacitor. As pointed out in Ref. 24, this is equivalent
treating the ionic layer as yet another material layer~so in
our case we would then have three layers: silicon dioxi
Teflon, and the ionic layer!. Since the thickness of the ioni
layer ~nm’s! is much smaller than the thickness of the ma
rial coatings (mm8s), the dielectric energy stored in the ion
double layer is negligible. It is possible to make this arg
ment precise even when nonlinear effects in the ionic dou
layer are considered. For the standard fully dissociated, s
metric salt situation discussed in Refs. 38 and 12, it can
shown~see the Appendix! that the ratio of the energy store
in the double layer to the energy stored in the solid dielec
must fall beloweslD /e lhs which is on the order of 0.001 fo
our devices. Heree denotes the dielectric constant in th
liquid and solid,lD is the Deybe double layer length sca
which is typically on the order of nanometers, whilehs is the
height of the insulating solid layer and it ranges between
and 10mm in our devices.

The second physical effect is the possible change in
liquid/solid surface tension coefficientg ls due to voltage in-
duced surface chemistry. This effect can be important. In
devices, protein adsorption/desorption to the Teflon surf
is modified by the applied voltage, and the adsorbed prot
change the surface tension properties of the Teflon appre
bly.

Consider first a simpler case. For a standard fully dis
ciated symmetric salt, the change in the positive and nega
ion concentrationDc6 at the solid/liquid interface depend
exponentially on the applied voltage as

Dc65coe7~zF/RT!Vdl ~19!

whereco is the far field ion concentration,Vdl is the voltage
drop across the double layer, andzF/RT is the characteristic
Downloaded 04 Jan 2007 to 129.2.70.104. Redistribution subject to AIP
e

id
-

e
e

z

,

-

-
le

-
e

c

.1

e

r
e

ns
ia-

-
ve

potential.12,38 If, in turn, the solid/liquid surface tension co
efficient g ls depends on the wall ion concentration,g ls

5g ls(c6), as stated in Butkus and Grasso,28 then gsl be-
comes a function of the applied voltage. Ifg ls(c6) is known
experimentally, say from Butkus and Grasso,28 then Eq.~19!
together with a voltage balance givesg ls5g ls(V). This must
then be substituted into Eq.~7! and the voltage dependen
g ls(V) will then appear in Eq.~17! also. The methods of Sec
II A and Eq. ~6! will now return the modified Young’s equa
tion for this case.

More complex situations, such as those involving prot
adsorption/desorption, raise two key issues. First, h
strongly does the liquid/solid surface tension coefficientgsl

depend on the species concentration at the wall? Butkus
Grasso28 find a moderate change ingsl based on electrolyte
concentration. Van der Vegtet al.27 find a much stronger
variation of both the solid/liquid and liquid/gas surface te
sion coefficients. Second, what is the transport rate of
chemical species from the liquid bulk to the solid/liquid a
liquid/gas interfaces? And how does this transport vary w
applied voltage? As noted in van der Vegtet al.,27 chemical
species transport is a complex and important issue.

B. Dielectric liquid atop a conducting solid

We now compute the electric potential energy for a
electric liquid drop with an applied voltage. This case
treated because we are interested in transporting diele
liquids such as silicone oil, and because this case reco
the controversial 1/R line tension terms from physical firs
principles. Such terms are included in Refs. 26 and 22 ba
on phenomenological grounds. Below it is assumed that
drop is an insulator with dielectric constante l and that the
solid is a perfect conductor; for example, a droplet of s
cone oil atop a metal electrode. A voltageV is applied as
shown in Fig. 3.

1. Electrical energy scaling

For this case, we assume the top electrode is alw
positioned so that it only penetrates the tip of the drop. T
analysis for a fixed electrode case is analogous to the an
sis carried out in Sec. IV C 3. The end result for the fix
electrode case is similar to the varying electrode height c
discussed here. Like in the gravity example, it is possible
find the form of the electrical potential energy by a scali
argument. As in Sec. IV A, the potential energy stored in

FIG. 3. A dielectric liquid drop with dielectric constante l atop a conducting
solid. The bottom plate has a zero ground potentialf50, but the liquid
immediately surrounding the tip of the electrode at the top of the drop h
f5V potential.
 license or copyright, see http://jap.aip.org/jap/copyright.jsp
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small volume Dv of ~ideal! dielectric material isDEde

5 1
2e l uEu2Dv, wheree l is the dielectric constant of the liqui

andE(x,y,z) is the electric field in the liquid.
To see how the electrical energy scales with volta

radius, and the dielectric constant, we need to unders
how the electric fieldE varies with these parameters. Fir
consider a drop of unit radius with a unit applied voltag
The electric potential field within such a drop is described
Poisson’s equation¹2f(x,y,z)50, with boundary condi-
tionsfbottom50 andf top5V51. ~Side boundary conditions
which are independent ofR andV, do not affect the scaling
argument.! The electric field is then the gradient of the p
tential field:E52¹f52(]f/]x,]f/]y,]f/]z).

Consider the potential fieldf(x,y,z) inside a drop of
unit radius with applied unit voltage. If we double the size
the liquid drop then the potential fieldf is stretched by a
factor of 2: fR51(x,y,z) becomes fR52(x,y,z)
5fR51(x/2,y/2,z/2). This means that the electric field
which is the rate of change of the potential in spa
will become half as strong. Thus ER(x,y,z)
51/RER51(x/R,y/R,z/R). Conversely, if we double the ap
plied voltageV then the electric field will be doubled. There
fore, if we know the electric field at position (x,y,z) for a
drop of unit size with unit voltage, then the electric field
(Rx,Ry,Rz) for a drop of radiusR with applied voltageV is

ER,V~Rx,Ry,Rz!5
V

R
ER51,V51~x,y,z!. ~20!

To find the stored potential energy, we must integrate
energy per unit volumeDEde5

1
2e l uEu2Dv over the drop

shape. Namely

Ede5
1

2ER,V drop
e l uER,Vu2dv,

5
1

2ER,V drop
e l

V2

R2
uER51,V51u2dv,

5
1

2
e l

V2

R2
R3E

R51,V51 drop
uER51,V51u2dv,

where the last equation is a consequence of the fact tha
volume v scales asR3. The integral in the last line only
depends on the shapeu ~both R and V are fixed to unity!
hence

Ede~R,u!5
1

2
e lRV2E

R51,V51 drop
uER51,V51u2dv

5
1

2
e lRV2ade~u!. ~21!

In summary, the electric fieldE varies asV/R; it appears
twice in the potential energy giving aV2/R2 dependence
while the volumev scales asR3. Together, they imply tha
the stored electrical energy for a dielectric liquid drop sca
as 1

2e lRV2ade(u).
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As in Sec. IV A, the potential energy stored in the vo
age source is twice again the capacitive energy stored in
dielectric, but with opposite sign. Hence the total electri
energy stored in the system is

Eelec~R,u!5
1

2
e lRV2ade~u!2e lRV2ade~u!

52
1

2
e lRV2ade~u!. ~22!

Equation~15! implies that theR dependence inside this term
will give rise to a line-tension-type effect in Young’s equ
tion:

g lg cosu5~ggs2g ls!1
1

R
b~u!.

Thus we have been able to derive the phenomenological
tension term cited in Refs. 22 and 26 from physical fi
principles by using Sec. II A and a scaling argument.

2. Shape factor a de„u…

To find the form factorade(u), we need to solve Pois
son’s equation for all possible drop shapes. Figure 4 sh
the electric potential fieldf(x,y,z)5c contours for contact
anglesu5154 °, 114 °, 78 °, and 37 °.

Form factor results for 14 contact angles are shown
Fig. 5. Notice thatade(u) is nearly independent ofu for
contact angles between 50 ° and 140 °. This is because
the high electric potential gradients¹f that make up the
majority of the integral occur at the top of the drop, or at t
top and bottom when the contact angle is close to 18
Hence only a very small angle can impact the high gradi
region at the top, and only a very large angle can create
then affect the high gradient region at the bottom.

Using the form factor of Fig. 5, together with Eq.~22!,
the potential energy for the interfacial plus electrical ene
is

E~R,u!5R2@~g ls2ggs!p sin2u1g lg2p~12cosu!#

2R
e lV

2

2
ade~u!. ~23!

DefineW5e lV
2/Rg lg as the nondimensional dielectric liqui

electro-wetting number. It is exactly this number that det
mines the size of the 1/R line-tension term. For aR
50.1 mm drop of silicone oil with a dielectric constant o
e l52.5e ~from CRC handbook39! wheree is the permittivity

FIG. 4. Four drops of equal radius but different contact anglesu5154 °,
114 °, 78 °, and 37 °. The constant electric potential contoursf(x,y,z)
5c are shown for a vertical slice through each of the four drops. T
calculated form factor for each drop isade(u)5*R51,V51 dropu¹fu2dv
50.0592, 0.0609, 0.0617, and 0.0640, respectively.
 license or copyright, see http://jap.aip.org/jap/copyright.jsp
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of vacuum, and an applied voltage of 100 V the ratio of t
interfacial to electrical energies is approximatelya/2W
5a/2Re lV

2/R2g lg5a/2e lV
2/Rg lg'(0.06/2)3(2.538.85

310212 C/Vm)3(100 V)2/(0.0001 m)3(0.02 J/m2)
50.0033. Evidently, less than 1% of the energy of our e
ample drop is electrical energy. We would have to incre
the voltage up to 1000 V before the electrical energy
comes appreciable; in that casea/2W'0.4.

Creating such a high voltage for such a small drop co
lead to dielectric breakdown: the electric field generated
1000 V across a 0.1 mm drop isuEu;V/R5107 V/m. For
oils, dielectric breakdown typically occurs right aroun
107 V/m. In terms of the electric field, the electro-wettin
number W scales ase lR

2(V/R)2/Rg lg5e lRuEu2/g lg , so it
would actually make more sense to pick an electric field t
is high but is substantially below the dielectric breakdow
and then to increase the drop radiusR until W approaches
unity. Such an experiment should allow one to see app
ciable line-tension effects.

3. Young’s equation for a dielectric liquid: The
‘‘line-tension’’ term

Applying Eq.~15! to Eq.~23! and dividing byg lg , gives
the nondimensional Young equation for a dielectric liqu
drop in terms of the electro-wetting numberW5e lV

2/Rg lg

cosu2S ggs2g ls

g lg
D2

1

2 S e lV
2

Rg lg
D F2

21cosu

2p sinu G
3Fade~u!q~u!1

dade

du
~u!G50. ~24!

Hereq(u) is defined immediately below Eq.~4! andade(u)
is shown in Fig. 5. Notice the 1/R ‘‘line-tension’’ depen-
dence. We write ‘‘line tension’’ in quotes because the eff

FIG. 5. Circles show the computed form factorade(u) for 14 different
contact angles. The stored energy in the liquid dielectric, for a drop of ra

R with applied voltageV, is now given byEde5
1
2e lRV2ade(u). Since the

energy stored in a capacitor isEde5
1
2CV2 this also gives the liquid drop

capacitance asC(u)5e lRade(u). Using u in radians, the equation for the
solid line fit is ade(u)'0.059210.0012u10.0022 tan(1.712u) and it only
holds for 0.4,u,3 in radians, or equivalently for 25 °,u,172 ° in de-
grees.
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is not, in fact, due to a line tension in any physical sense
arises because the drop volume scales asR3 and the electric
field scales asV/R. Upon integration of the dielectric energ
this gives anR-type energy dependence, which become
1/R force dependence via Sec. III C, Eq.~15!. The exact
same scaling argument gives, for a conducting drop on
insulating surface, andR2 energy dependence in Eq.~17! and
no 1/R line tension in Eq.~18!.

Equation~24! cannot be solved analytically, but can b
solved numerically. Figure 6 shows the resulting variation
contact angle as a function of the nondimensional elec
wetting parameterW5e lV

2/Rg lg . The contact angle de
creases only gradually with increasingW. This means that
dielectric liquids on conducting solids will change sha
only slightly under applied electric fields. It is clear why
would be difficult to measure such an effect experimenta
the effect is small and it is sensitive to the dielectric prop
ties of the liquid.

C. Slightly resistive liquid atop a dielectric,
highly-resistive solid implies contact
angle saturation

In Sec. IV A we considered the case of a conducti
liquid atop a perfectly insulating dielectric solid: this ca
recovered the Young–Lippmann Eq.~18!, and was a first-cut
model of the physical situation encountered in our elect
wetting devices. However, the assumption of a perfect in
lator is unrealistic, and so we introduce the resistance of
solid ~which is large by design! and also a small amount o
liquid resistance~which is unavoidable in practice!. Liquid
resistivity depends on the number and type of ions in

sFIG. 6. For a dielectric liquid atop a conducting solid, this plot shows
contact angle dependence on the electro-wetting numberW5e lV

2/Rg lg for
six nominal~zero voltage! contact angles. The analysis above predicts t
the drop shape will snap-to complete wetting past some critical elec
wetting numberW* . The predicted snap-to limitW* is within the plot range
for the three bottom curves. Three cautions are necessary: first, the s
snap-to situation for the bottom three curves corresponds to a very
electric field~the drop is thin and the voltageV is high!; second, the fit for
ade(u) used to generate these results does not hold foru,26 °; third, we
suspect that other physical effects, like electrolysis, will become activ
high V/low u, and this snap-to total wetting will not occur.
 license or copyright, see http://jap.aip.org/jap/copyright.jsp
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FIG. 7. Left: A bulk circuit diagram for a liquid with a small amount of electrical resistanceRliq , atop a dielectric solid with capacitanceCsol and a large
amount of electrical resistanceRsol ~by design!. Middle: The corresponding~steady-state! PDE with boundary conditions. Here,f(x,y,z) is the electric
potential inside the three-dimensional drop;r is the resistivity~units V m) wherer5r l inside the liquid is small andr5rs inside the solid is large, and

¹(1/r¹f)50 includes the liquid/solid electric field jump conditions;n̂ is the outward unit normal and so¹f•n̂50 is the no-flux external boundary
condition; finallyf5V andf50 are the top and bottom boundary conditions applied by the voltage source. Right: This figure shows an example
of the PDE equations. The lines show 28 equally spaced contours of constantf(x,y,z)5c for a vertical slice through the three-dimensional liquid and so
geometry. Notice that almost all the voltage drop occurs across the solid but there is also a small amount of voltage drop in the liquid.
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liquid, see Probstein,12 Sec. 2.5. These features are all that
required to replicate the contact angle saturation that we
in our devices.

We note that many different physical effects can pot
tially cause contact angle saturation. Any kind of loss mec
nism will cause the reversible dielectric energy stored in
solid to deviate away from the ideal Young–Lippmann valu
Verheijen and Prins5 present a convincing argument th
charge trapping is the dominant loss mechanism in their
vices. Other mechanism are proposed in Refs. 4,6 and
We stress three points here. One, a reasonable amou
liquid resistance will cause contact angle saturation~see the
development below!. Two, the saturation predicted by liqui
resistance accurately matches the experimental data we
in our devices~see Fig. 13!. Three, liquid resistance is th
leading cause of contact angle saturation in our devices.
examined a large number of physical mechanisms and liq
resistance was the only physically meaningful assump
that was able to explain our experimental data.

1. Equivalent circuit diagram

To understand how liquid resistance affects contact an
saturation, first consider the bulk circuit diagram shown
the left side of Fig. 7. When the total resistance is large
finite, there is a small amount of current flowI through the
liquid and solid. Following standard electrical engineeri
practice, the relation between the voltageV and the currentI
is most conveniently expressed in the frequency domain b
complex impedancez(s)5V(s)/I (s). ~Heres is the Laplace
variable. For a sinusoidal signalV(t)5V̄ cos(wt) of fre-
quencyw, takes5 iw. Settingw50 gives back the steady
stateV(t)5V̄ case.! The total impedance for the circuit dia
gram shown in Fig. 7 is

V~s!

I ~s!
5z~s!5

11
Rliq

Rsol
1sRliqCsol

sCsol1
1

Rsol

. ~25!

If the liquid resistance is set to zero (Rliq→0) and the solid
resistance is set to infinity (Rsol→`) to model a perfect in-
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sulator, then the above impedancez(s) reduces toz(s)
51/sCsol and we recover the pure solid capacitive case
Sec. IV A.

As before, all the reversible electrical energy is stored
the solid capacitor and the voltage source.~The liquid and
solid resistance only cause a non-reversible energy loss.! The
energy stored in the solid capacitor is stillEde5

1
2CsolVsol

2 ,
where Vsol is the voltage drop across the solid~see
Feynman,33 Vol. II, Chap. 22, Sec. 5!. To find this voltage
drop, note that the impedance of the solid iszsol

51/(1/sCsol11/Rsol), that the current through the liquid i
the current through the solid is the total currentI liq5I sol

5I , and that Eq.~25! relatesV(s) and I (s), hence

Vsol~s!5zsol~s!I ~s!5
zsol~s!

z~s!
V~s!

5S 1

11
Rliq

Rsol
1sRliqCsol

D V~s!. ~26!

Thus in steady state, i.e., ass5 iw→0, the voltage and en
ergy stored in the dielectric are

V̄sol5S 1

11
Rliq

Rsol

D V̄, Ēde5
1

2
CsolS 1

11
Rliq

Rsol

D 2

V̄2,

~27!

whereV̄ is the applied dc voltage. This is the same dep
dence as shown in Eq.~16! for the perfectly insulating solid
~sinceCsol5esAls /h), except for the newRliq /Rsol term. The
key observation is that the resistance of the liquid dropRliq is
shape dependent, and it is this dependence of the resist
on the contact angleRliq5Rliq(u) that is going to lead to
contact angle saturation. The mechanism is elucidated be

2. PDE’s and their solution

Our first task is to find the PDE’s and boundary con
tions that describe the steady-state electric poten
f(x,y,z) inside the liquid and the solid.

We have assumed that the liquid is a resistor with re
tivity r l but that it has no capacitive effects. The curre
 license or copyright, see http://jap.aip.org/jap/copyright.jsp
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FIG. 8. Solution scaling: Both pictures show the electric potential inside the liquid and solid with the same color scale: white denotes high electricpotential,
black denotes zero potential, and the curves denote surfaces of constantf(x,y,z). The notch at the top represents the inserted wire electrode: the
insertion depthD is fixed and is taken into account in the scaling argument. The picture on the left shows a solution of Eq.~28! with Ro51, h50.2 and

Āo50.2rs /r l510. The picture on the right shows a solution forRo51.5, h50.15 and the same liquid/solid resistance ratioĀo50.15rs/1.5r l510. Notice
that the solutions are essentially self-similar. There is a small discrepancy because the scaling argument ignores the horizontal stretching of theelectrical edges
effects in the solid region immediately underneath the triple line.
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the
density in the liquid is given byj l5E/r l whereE is the local
electric field. By comparison, the solid has both a resist
and capacitive component with resistivityrs and dielectric
constantes . The instantaneous current density in the solid
given by j5E/rs1esdE/dt. At steady state, thedE/dt term
goes to zero and we are left withj5E/rs . Conservation of
charge states that the divergence of the current densit
zero:¹ j50. Moreover, the electric field is minus the grad
ent of the electric potentialE52¹f hence

¹S 1

r
¹f D50, r5H r l resistivity in the liquid

rs resistivity in the solid
~28!

is the PDE that describes the electric potential inside both
liquid and the solid at steady-state. This formulation c
rectly includes the conservation of current flow in the ve
cal direction across the solid/liquid interface, namely:j z

5(]f/]z)/r is a constant across the interface withr5r l in
the liquid andr5rs in the solid, hence the solid/liquid jum
conditions arers]f l /]z5r l]fs /]z.

Boundary conditions for Eq.~28! are as follows. The
potential at the bottom of the solid is fixed at a nominal~and
arbitrary! f50 potential. An inserted electrode at the top
the liquid is held atf5V by the applied voltage source. A
all the liquid/gas and solid/gas boundaries we use a z
normal electric field conditionE•n̂5¹f•n̂50, wheren̂ is
the outward unit normal. This last condition is analogous
the liquid/gas jump condition, here (r l /s /rg)Eg•n̂5El /s•n̂,
except that we further assume that the resistivity of airrg is
large compared to the resistivity of the liquidr l and solid
rs , and soEl /s•n̂ is essentially zero at the liquid/gas an
solid/gas boundary.

A summary of the PDE and its boundary conditions
shown in the middle of Fig. 7. The right side of the figu
shows a sample solution for au5114 ° contact angle with
applied voltageV51, liquid radiusR51, solid heighth
50.2, and resistivity ratio randomly chosen atrs /r l5230.
This solution should be understood as follows: if the dr
shape were to somehow be held atu5114 ° and a voltage
V51 were suddenly applied, the electric potentialf(x,y,z)
inside the liquid and solid would approach the field lin
shown on the right side of the figure at a rate of 1/t. This
time constantt is the charging time for the solid capacito
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based on the available current flow through the liquid a
solid. From the preceding section, it can be shown and t
estimated that

t5
Csol

1/Rsol11/Rliq
'

esR
2/h

R2/rsh1R/r l

. ~29!

For a R51 mm water drop, withr l'53104 V m, rs

'1012 V m, es516310212 C/Vm 39 and solid heighth
51026 m, this time-constantt is on the order of 1023 s.
Because this time constant is quite fast, it is reasonabl
treat the potentialf(x,y,z) as a steady-state quantity. Onc
the potentialf is known, the dielectric energy stored in th
system is given by the integral ofdEde5

1
2(D•E)dv

5 1
2(es¹f)•(¹f)dv over the solid geometry

Ede~R,u,h,V,rs /r l ,es!5
1

2Esol
esu¹f~x,y,z!u2dv. ~30!

Equation ~30! mathematically captures the contact ang
shape dependence left unsaid in Eq.~27!. As previously, the
total electrical energy is the sum of the energy stored in
dielectric and in the voltage source:Eelec5Ede1Evs5Ede

22Ede52Ede.

3. Electrical energy scaling

Equation~30! shows how the electrical energy depen
on the geometry (R,u,h), the applied voltageV, and the
material propertiesrs /r l andes . Our task now is to flush ou
and simplify this dependence so that we can understand
the energy minimum varies with geometry, applied volta
and material properties. This can be done by a scaling an
sis just like the one used in Secs. III B, IV A 1, and IV B
but with one additional key assumption.

If we look at the electric potential solution shown on th
right of Fig. 7, we see that the potential field surfac
fs(x,y,z)5c inside the solid are horizontal except right b
low the drop edges. This is because the height of the so
h̄50.2, is small compared to the radius of the liquidR̄. In
our electro-wetting devicesh/R,1024, hence the energy
content of the edge effects is tiny, and we can assume
electric field in the solid is essentially vertical:Es'
2(0,0,]fs /]z).
 license or copyright, see http://jap.aip.org/jap/copyright.jsp
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Then the basic scaling result is this. If we take an ex
ing solution to Eq.~28! with the boundary conditions of Fig
7, and we stretch the liquid in thex,y,z directions by a factor
R̂, and stretch the solid by a factorR̂ in the x,y directions,
and byĥ in thez direction, the end result is still a solution s
long as the resistance of the liquid or solid is also change
as to keep the resistance ratioĀ05hrs /Ror l at its previous
value. Figure 8 shows this scaling idea graphically.

This means that if we know the solution to Eq.~28! with
the boundary conditions of Fig. 7 for a fixed liquid radiu
R̄51, solid heighth̄50.2, applied voltageV̄51, and for
any contact angleū, any normalized electrode penetratio
depthD̄/R̄ and any resistivity ratior̄s / r̄ l5Ā, then we also
know the solution for any combination of paramete
R,h,D,V,u,rs andr l . We are going to assume that the ele
trode is always at a fixed heightH above the solid becaus
this is how the experiment is actually done. Thus the relat
between the radiusR, contact angleu and the electrode pen
etration depthD is D512cosu2H/R whereH is fixed but
R,u andD vary. ~The electrode insertion depthD is shown in
Fig. 8 but not in Fig. 7.! Using this relationD5D(R,u) we
can suppress further discussion of theD parameter. In math-
ematical terms, if we letf̄ ū,Ā( x̄,ȳ,z̄) be the known solution
for R̄51,V̄51 andh̄50.2, ~and choosez such thatz50 at
the solid/liquid interface! then

f~x,y,z!55 f l~x,y,z!5Vf̄ l
u,ĀS x

R
,

y

R
,
z

RD in the liquid

fs~x,y,z!5Vf̄s
u,ĀS x

R
,

y

R
,
h̄z

h
D in the solid

~31!

is a solution for arbitraryR, h, V, u, rs , andr l whereĀ must
be set toh̄Ā5rsh/r lR. For example, to find a solution fo
R51 mm, h50.2 mm, V550 V, u5120 °, and rs /r l

5327, we first find the nondimensional solutionf̄ for R̄

51, h̄50.2, V̄51, ū5120 °, andĀ50.327, then the di-
mensional solution is given by Eq.~31!. ~For a proof of this
statement, see the Appendix.!

Using the above scaling, and noting once again that
total electric energy is minus the energy stored in the die
tric ~see Secs. IV A 2 and IV A 3!, we find that the total elec
tric energy is given by

Eelec~R,u,h,V,rs /r l ,es!

52
1

2ER,h solid
esu¹f~x,y,z!u2dv

52
1

2 S esR
2

h DV2h̄

3E
R̄51,h̄5.2 solid

U¹̄f̄s~ x̄,ȳ,z̄!Uu,Ā5
rsh/h̄

r lR
U2dv̄

52
1

2 S esR
2

h DV2h̄aS u,
rsh/h̄

r lR
D . ~32!
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By using scaling arguments, we have managed to take
energy that depends on six variables (R,u,h,V,rs /r l ,es),
and rewritten it in terms of two nondimensional numbe
(u,Ā) times a simple dimensional quantity (esR

2V2/h). It
remains to find the shape factora(u,Ā). We do this numeri-
cally in the next section.

4. Shape factor a „u,Ā „R…… and the constant volume
energy minimum

At this stage, we are within the energy minimizatio
framework outlined in Sec. II. For our slightly resistive dro
atop a highly resistive solid, we could note that the to
energy of the dropE(R,u) is given by a sum of the interfa
cial energyEint(R,u;p1) in Eq. ~10!, and the electrical en-
ergy Eelec(R,u;p2) in Eq. ~32!. We could then compute
a(u,Ā) numerically and solve Eq.~5! with outside param-
eters p15(g ls2ggs,g lg) and p25(h,V,rs /r l ,es). This
would yield the equilibrium contact angleu as a function of
R,p1 andp2.

However, this process is tedious for the following re
son. The shape factora(u,Ā) here depends on two variable
To map it out accurately we would have to evaluatea for at
least 15 values ofu and 10 values ofĀ. This is 150 solutions
of the three-dimensional PDE Eq.~28!. To get a sufficiently
fine-scale solution takes about 15 min per simulation, wh
is a total of 37.5 h of run time.~Of course we could paral
lelize the computations, and take previous solutions as in
conditions for subsequent solution, but still, doing it in th
way is a significant computational burden.!

Instead, we are going to use a short-cut. The volumv
5v(R,u) of the liquid drop is fixed. Inverting Eq.~2! yields

R~u!

Ro
5r ~u!5 3A 4/3

2

3
2

3 cosu

4
1

cos 3u

12

, ~33!

whereRo5A3 @3v/4p is the nominal radius of a drop of vol
ume v that is a perfect sphere~so for u5p). Under the
constant volume constraint, the shape factora only has au
dependence

a~u!5aS u,
rsh/h̄

r lR~u!
D 5aS u,

Āo

h̄r ~u!
D ~34!

with Āo5rsh/r lRo . Using this relation for the radiusR in
terms ofu, the total energy can be written in nondimension
form as

E~u!

g lgRo
2

5r 2~u!F S g ls2ggs

g lg
Dp sin2u12p~12cosu!G

2
1

2 S esV
2

hg lg
D r 2~u!F h̄aS u,

rsh

r lRo

1/h̄

r ~u!
D G . ~35!

Notice the dependence on the three nondimensional pa
eters

G5
g ls2ggs

g lg
5nondimensional surface tension coefficient,
 license or copyright, see http://jap.aip.org/jap/copyright.jsp
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FIG. 9. The strength of the electric field inside the solid, and thus the amount of stored electrical energy, decreases as the liquid drop approaches toal wetting.
Here we show a case where the resistivity of the liquid is 50 times smaller than the resistivity of the solid. All scaling is according to Eq.~31!, but with the
figures drawn to show a constant electrode height. The solid is colored by the strength of its electric fieldu¹fsu, with black denoting a low electric field, light
gray up to white representing a high field. Notice how the electric field strength in the solid decreases as the droplet spreads and there is a progressly longer
liquid path from the bottom of the top electrode to the solid near the triple line.~If there was no liquid resistance, the size of electric field in the solid wo
remain the same for all contact angles.!
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U5
esV

2

hg lg
5electro-wetting number for dielectric solid,

Āo5
rsh

r lRo
5solid/liquid resistivity ratio.

These three nondimensional parameters will uniquely de
mine the contact angle.

Figure 9 shows sample potential field solutionsf(x,y,z)
for Āo510 for three values ofu. Here the solid is colored by
the magnitude of the local electric fieldu¹fs(x,y,z)u. The
constant liquid volume shape factorh̄a@u,Āo /h̄r (u)# is now
computed by numerically integratingu¹fs(x,y,z)u over the
solid ~edge effects are truncated!. Results are plotted agains
u for four values ofĀo in Fig. 10. As is necessary, the ze
liquid resistance~infinite Āo case! reduces to the Sec. IV A
scenario withh̄a(u,1000/h̄) indistinguishable fromp sin2u
@compare with Eq.~16!#. As the resistance is increased, t
form factor a begins to fall away from the zero resistan
case, reflecting the fact that there is now a substantial vol
drop across the liquid and less capacitive energy is be
stored in the solid.

5. Detailed explanation of contact angle saturation

We can now precisely explain contact angle saturat
through Figs. 11 and 12.

Figure 11 shows the net electrical energy~when 1
2U

51) as a function of the contact angleu for a liquid drop of

FIG. 10. The constant liquid volume shape factor of Eqs.~32! and ~34!. If
there is no liquid resistance, the form factor is proportional to the liqu
solid area:a(u,`)5p sin2u. As the liquid resistance increases (Ao de-
creases! the energy stored in the solid falls away from the ideal zero liq
resistance case. Points on the graph above are found by a numerical so
of Eq. ~28!. Whenu reaches 66 ° the top of the liquid drop has fallen belo
the bottom tip of the inserted electrode: this effect can be seen in Fig.
Downloaded 04 Jan 2007 to 129.2.70.104. Redistribution subject to AIP
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constant volume. Different curves are shown for four valu
of the solid to liquid resistance ratioAo5rsh/r lRo . The
solid/liquid interface energy curveEsl(u) is shown for com-
parison. For zero liquid resistance, theAo5` curve is the
mirror image of theEsl curve: Eelec(u)52Esl(u). In this
case, Eq.~35! becomes

E5GEsl1Elg2 1
2UEsl5~G2 1

2U!Esl1Elg . ~36!

It is as if the applied voltage inU5esV
2/hg lg were directly

changing the surface tension coefficients inG5(g ls

2ggs)/g lg . So this says that if we increaseU high enough
~up to G2 1

2U521) then we would drive the contact ang
to u50. The left side of Fig. 12 shows this scenario noti
how asU increases, the energy curve unbends, and aU
53 ~whenG2 1

2U5 1
22 1

233521) the contact angle arrive
smoothly at total spreading.

But there is always some liquid resistance:Ao5” `. As
this liquid resistance increases (Ao decreases! the electrical
energyEelec(u,Ao) deviates away from the ideal2Esl(u)
value as shown in Fig. 11. This is just a consequence

/

tion

FIG. 11. This figure shows electrical energy curves for a fixed liquid v
ume. When there is no liquid resistance (Ao5`), the electrical energy
exactly balances the solid/liquid interfacial energy:Eelec(u,Ao5`)5
2(2G/U)Els(u). This implies that the imposed electric energy can perfec
cancel the energy due to the liquid/solid interface. When the liquid re
tance is nonzero (Ao,`), the electric energy deviates away from the mirr
image ofEsl and it is not possible to cancel the effect of the solid/liqu
energy by driving up the voltage. This leads to the contact angle satura
shown in Figs. 12 and 13.
 license or copyright, see http://jap.aip.org/jap/copyright.jsp



nd
w
greater
mum

5807J. Appl. Phys., Vol. 93, No. 9, 1 May 2003 Shapiro et al.
FIG. 12. Left: Total energy curves for a constant liquid volume as a function of contact angleu when the liquid resistance is zero. Different curves correspo
to different electro-wetting numbersU5esV

2/hg lg5@0,0.5, . . . ,2.5,3#. The contact angle slides smoothly to zero asU increases. Right: The same plot, no
including a small amount of liquid resistance:A5rsh/r lRo5100. At lower contact angles, there is a greater net liquid resistance, hence there is a
energy loss, and hence the applied electric field cannot drive the contact angle to zero. Consequently, the contact angle is caught in an energy miniaround
u'75 °.
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solving Maxwell’s Eq.~28! with the boundary conditions o
Fig. 7 and using the constant liquid volume constraint of E
~33!. This numerical result can be explained intuitively. Asu
decreases, the radius of the drop increases~to keep the vol-
ume constant! and in addition the liquid edges pull awa
from the fixed electrode~as shown in Fig. 9! this means that
the ions in the liquid have to travel a longer distance to
from the electrode at the top to the solid at the bottom. T
the effective resistance of the liquid increases as con
angle decreases. For greater liquid resistivitiesr l , the resis-
tance first starts to increase appreciably at larger con
anglesu.

We note that even a small amount of liquid resistan
implies that it is not possible to drive the contact angle
zero with an applied voltage of any size. For a fixed volum
the interfacial area, and hence the energy, of Eq.~35! goes to
infinity as contact angle goes to zero at a rate ofr (u)
Downloaded 04 Jan 2007 to 129.2.70.104. Redistribution subject to AIP
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;u22/3 due to an area versus volume scaling argument.
the electrical energy goes to infinity at a slower rate due
the 1/r (u) term inside the shape factora in Eq. ~35!. Hence
for sufficiently smallu, the interfacial energy will always
beat the electrical energy, the total energy will go to infin
asu goes to zero, and sou50 can never be an energy min
mum, no matter the applied voltage.

V. CONTACT ANGLE SATURATION MODEL VERSUS
EXPERIMENTS

The experimental setup is as shown in Fig. 2. For
experiments cited here, the insulating dielectric layer c
sists of either a single layer of Teflon or a double layer
Teflon and silicon dioxide~see Fig. 13!. Silicon is used for
the bottom electrode, and a metal wire is employed for
top inserted electrode. More experimental details can
ainst
ry for
FIG. 13. Left: Measured contact angle vs applied voltage for four different Teflon/silicon oxide coatings. Right: The same data is re-plotted agthe
nondimensional electro-wetting numberU5esV

2/hg lg . The thin solid line shows the Young–Lippmann prediction. The two dashed lines show our theo
a low and high liquid resistance. The thick solid line shows our prediction when we take the resistance ratioAo5100. Since for our experimentsh/R
;1024, this corresponds to a liquid resistivity 1026 times smaller than the solid resistivity. We have not yet been able to measureAo experimentally~we have
to measure the resistance across the solid and in the liquid! but Ao5100 is of the right order of magnitude for our high resistance dielectric coatings.
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TABLE I. Summarizes the examples of Sec. III. For each physical effect: column two lists the energy associated with that effect; column three s
resulting term that appears on the right-hand side of Young’s equation; and column four gives the relevant nondimensional number. For exampltio
between surface tension and gravity forces is given by the bond numberB. If there are many competing effects, then each effect will enter with a
corresponding to its nondimensional number.

Physical Resulting energy term: Term on right in Nondimensional
effect E(R,u,p1 ,p2 , . . . )5 Young: cosu5 . . . number Comments

Interfacial
energy

(g ls2ggs)Als1g lgAlg

see Eqs.~8!, ~9!, ~10!
cosu52G

G5
g ls2ggs

g lg

Exactly recovers
Young’s equation

Gravity R4%g
2p

3
@31cosu#sin6Su2D 2BFcosu

3
2

cos 2u

12
2

1

4G B5
R2%g

g lg

Usually small

Dielectric
solid

2
esV

2Als

2h
52

esV
2

2h
R2p sin2u

see Eqs.~16! and ~17!
1

1
2U U5

esV
2

hg lg

Recovers the
Lipp–Young Eq.

Ion layer
capacitance

2
elAlsVdl

2

2lD
>2

e lAls

2lD
F2lDes

he l
VG2

Vdl voltage across ion layer

<
1
2U34D

D5
lDes

he l
very small

Is negligible,
see Sec. IV A 4

Dielectric
liquid 2

1
2e lRV2ade(u)

See Eq.~22!, Fig. 5
1

1
2Wb(u)

for b, see Eq.~24!
W5

e lV
2

Rg lg
Note the

1
R

line

tension inW

Liquid
resistance 2

esAls

2h S V

11Rliq /Rsol
D 2

52
esR

2V2

2h
a(u,Āo /R)

Not found explicitly,
see Sec. IV C 4. Āo5

rsh

r lRo
is large

Liquid resistance leads to
contact angle saturation
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found in Moonet al.24 Experimental results are shown on th
left of Fig. 13. Results are plotted for four different coatin
as contact angle versus voltage.

The first step is to re-plot this data against the nondim
sional electro-wetting numberU5esV

2/hg lg of Eq. ~35!,
then, as seen on the right of the figure, all the data essent
fall on a single master curve. The theory we have develo
in the preceding sections predicts this master curve. We
able to match all the data if we take a solid/ liquid resistan
ratio of Ā5100. Since the liquid radius in our devices is o
the order of 10 000 times greater than the solid thicknesh,
this corresponds to a liquid/solid resistivity ratior l /rs

;1026: this is all that is necessary to cause a 75 ° con
angle saturation.

VI. RESULTS SUMMARY

a. Minimum total energy and Young’s equation: All the
results in this article are based on a minimum energy fra
work. This in itself is not new, see Chap. 10 in Probstein12

and Refs. 15, 16, and 26 for example. However, we h
made a careful effort to extract as much information from
energetics framework as is possible. We have explicitly
cluded size dependence in the energy minimum formulat
and have found an analytic relation between the chang
contact angledu and the change in radiusdR necessary to
keep the liquid volume constant@see Eqs.~2! and ~4!#. This
leads to Eq.~6! which is in fact exactly Young’s equation i
we consider the energy due to interfacial effects only~see
Downloaded 04 Jan 2007 to 129.2.70.104. Redistribution subject to AIP
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Sec. III A!; but it further allows the inclusion of any othe
energy terms~due to gravity, capacitive effects, the doub
layer, etc.!. Specifically, we have found a simple and inte
esting link between energy scalings and the associated te
in Young’s equation. Any physical effect that gives rise to
E}Rk energy size dependence, will give aRk22 term in
Young’s equation~see Sec. III C!.

b. Summary of physical examples: Table I summarizes
the examples of Sec. III.

c. A triple-line force balance is insufficient: Much of the
early literature analyzed surface tension by phrasing a fo
balance at the triple line only~see Fig. 14! The limitation of
this viewpoint has been recognized in some rec
articles.5,6,26 Essentially, if we have internal bulk forces a
occur in the case of gravity~the simplest example! or be-
cause of internal electric fields such as the one shown in
4, then we must balance the bulk volume forces against
interfacial effects. To do so, one must either consider
forces everywhere~not just at the triple line! or one must

FIG. 14. The left diagram shows a force balance at the triple line only. T
model cannot capture the effect of internal forces~shown schematically on
the right! such as gravity or the forces due to internal electric fields. F
example, the electric field of Sec. IV B, Fig. 4 will create forces everywh
inside the liquid.
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minimize the total system energy as we have done here
d. Only consider gross liquid shape: We have ignored

local details of the liquid shape, meaning we do not acco
for liquid pinching at the top electrode or for the details
the shape at the three phase line. Instead, we have ass
two numbersR andu which parametrize the gross shape
the liquid drop as shown in Fig. 1. For all the different phy
cal scenarios discussed in Sec. III, at the end we have alw
expressed the total energy in terms of these two numb
have then relatedR to u through Eq.~4! @or more directly
through Eq.~33!# and have then found the minimum ener
contact angleu. Our basic point is that including the detai
of the shape in the vicinity of the triple line is computatio
ally expensive, difficult to check experimentally, and, at le
in our devices, unnecessary to explain phenomena suc
line tension and contact angle saturation.

It is possible to extend our framework to account f
droplet deformation at the top electrode, and also for
shape of droplets between two planar electrodes, or betw
multiple electrodes of any shape. Instead of considerin
truncated sphere whose shape is uniquely described by
two parametersR and u, we consider a drop whose shap
is described by a longer list of parametersr
5(r 1 ,r 2 , . . . ,r n). For example, if the drop is rotationall
symmetric,r j could be a list of points that define the liquid
gas curve in the vertical plane. If the droplet is not symm
ric, then ther j ’s will define a discretized surface. To reca
the analysis of Sec. II A, we find the energyE in terms of this
shape vectorr and physical parametersp. This involves
solving Maxwell’s equations as a function of the shaper . We
then minimizeE(r ,p) with respect tor , subject to a constan
volume constraint]v(r )/]r 50, to find the minimum energy
shaper* . Thus our semianalytic formulation is replaced by
purely numerical optimization. This formulation recove
droplet pinching at inserted electrodes, and it predicts
shapes of drops squashed between two planar electrodes
tailed shape results for such cases will be presented in fu
publications.

e. Numerical solution of the electrostatic PDEs plu
scaling arguments:For cases that involve electric fields, w
have solved the Maxwell’s PDEs that give rise to the el
trostatic energy terms. Moreover, in each case we have
used a scaling argument to elucidate how the energy dep
on parameters such as drop radiusR, insulating solid height
h, applied voltageV and material parameters like the condu
tivity and dielectric constants. Only after we have extrac
all possible parametric dependencies, do we numeric
solve Poisson’s Eq.~28! for theu shape dependence. It turn
out that the scaling arguments~the liquid electric field goes
as the voltage over radius, the liquid volume scales as ra
cubed, the solid volume scales as radius squared times
height of the solid! can provide a tremendous amount
information. In fact, scaling arguments alone are sufficien
show when line tension terms do and do not exist. Sca
arguments reveal the underlying nondimensional numb
that capture the relative strength of the different physi
effects, and scaling arguments can also be used to take
advantage of a limited set of numerical solutions. Howev
to predict the details of theu shape changes we need to kno
Downloaded 04 Jan 2007 to 129.2.70.104. Redistribution subject to AIP
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how the electrical energy changes with contact angle and
requires numerical solutions of Eq.~28! for varying droplet
shapes.

f. Liquid resistance leads to contact angle saturatio
For our devices, we have found that including a small re
istic amount of liquid resistance is sufficient to explain o
served contact angle saturation data. Basically, the shape
pendent resistance of the liquid drop leads to lower ene
storage in the solid dielectric at small contact angles. Sec
IV C 5 provides a detailed analysis. Section V shows a co
parison with experimental data.
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APPENDIX A: MATHEMATICAL DETAILS

Equations~8!, ~9!, and~12! are all derived by partition-
ing the spherical drop into infinitesimally thin horizont
disks of varying radii and performing an integration over
the disks.

The double layer capacitive energy ratio result of S
IV A 4 is proved as follows. The Gouy–Chapman doub
layer theory outlined in Hiemenz and Rajagopalan38 ~Sec.
11.6! can be solved analytically for the potential in th
double layer. Specifically, using normalized (ˆ) variables

f̂~ ŷ!52 lnF 12
12exp~V̂l /2!

11exp~V̂l /2!
e2 ŷ

11
12exp~V̂l /2!

11exp~V̂l /2!
e2 ŷG , ~A1!

wheref̂5zF/RTf is the normalized potential in the doub
layer, ŷ5y/lD is the normalized vertical distance away fro
the y50 wall, lD5Ae lRT/2F2z2co is the Deybe length
scale,f̂( ŷ50)5V̂l is the normalized potential at the wal
andz,F,R,T,co ande l are the charge number, Faraday co
stant, the gas constant, the far field ion concentration, and
dielectric constant of the liquid. Differentiating Eq.~A1!

with respect toŷ gives the nondimensional electric field i
the liquid Êl52df̂/dŷ. Specifically, at theŷ50 wall

Êl~ ŷ50!52
df

dŷ
u ŷ50522 sinh~V̂l /2!. ~A2!

In Sec. IV A 4 we have a solid dielectric layer under th
liquid ion layer. This layer has a dielectric constantes and a
voltage dropVs . The total voltage drop across the liquid an
the solid must equal the applied voltageV5Vs1Vl . More-
over, the electric field must satisfy the standard jump con
tion esEs5e lEl , Feynman,33 Vol. II, Chap. 10, whereEs is
 license or copyright, see http://jap.aip.org/jap/copyright.jsp
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the electric field in the solid aty50. If the dielectric has
heighths , then by virtue of the fact thatEs5Vs /hs we re-
cover ~after normalization!

22 sinh~V̂l /2!5
es /e l

hs /lD
V̂s . ~A3!

This can be inverted and then bounded from above

V̂l52 sinh21S 2
es /e l

2hs /lD
V̂sD<2 sinh21S 2

es /e l

2hs /lD
V̂D ,

~A4!

whereV̂ is the voltage applied across the ionic double la
and the solid. The inequality follows fromV̂s5V̂2V̂l<V̂.
The energy of a single chargeq located at heighty above the
wall is

u~y!5ez
RT

zF
f̂~y/ld!, ~A5!

wheree51.631029 C is the elementary unit of charge. Th
charge per unit volume in the double layer is

n~y!5NA@c1~y!2c2~y!#5NAco@exp~2f̂ !2exp~f̂ !#

522NAco sinhf̂~ ŷ!, ~A6!

whereNA is Avogadro’s number. Multiplying Eqs.~A5! and
~A6!, and simplifying the dimensional coefficients, gives t
net capacitive energy stored in the ionic double layer as

EDL cap5
1

2

e l

lD
S RT

zFD 2E
0

`

22f̂~ ŷ!sinhf̂~ ŷ!dŷ. ~A7!

The key point is that usingf̂( ŷ) from Eq. ~A1! and the
upper bound of Eq.~A4! it can be shown that the integral i
Eq. ~A7! is bounded by (eslDV̂/e lhs)

2. Thus the capacitive
energy stored in the ionic double layer is much smaller th
the capacitive energy stored in the solid dielectric:EDL cap

<(eslD /e lhs)EDEs . This is the result stated in Sec. IV A 4
Numerical solutions of Maxwell’s equations used

Figs. 4, 5, 7, 8, 9, 10, 11, 12, and 13 are carried out
follows. Poisson’s equation are phrased in cylindrical co
dinates with an assumed rotational symmetry about thz
axis: ¹2f(r ,a,z)5]2f/]r 211/r ]f/]r 1]2f/]z2. In all
cases, we take¹fsides•n̂50 where n̂ is the outward unit
normal at the liquid/gas or liquid/solid boundary. This co
dition assumes that the dielectric constant of aireg is much
smaller than that of the liquide l or that of the solides .
Boundary conditions for the remaining surface are outlin
in the main text. The partial differential equations are d
cretized and solved usingFEMLAB software ~www.femlab-
.com!. Adaptive meshing is used because very high accur
is required of the numerical solutions. Specifically, in Fig.
we need to accurately find the energy minima inside shal
wells. Even a 1% error in the numerical solution will lead
a significant lateralu error in the energy minimum place
ment. The numerical solutions shown in Fig. 12, and th
also Fig. 13, are accurate to within 0.01%.

The solution scaling of Eq.~31! for the slightly resistive
liquid atop a highly resistive dielectric solid is proved
follows. The proof proceeds by assuming thatf̄ is a valid
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solution of the PDE and boundary conditions presented
Sec. IV C 2, and then showing thatf is also a valid solution.
The original liquid solution f̄ l is multiplied by V and
stretched by a factor ofR in all three directions. A stretched
and multipled field still satisfies the necessary Laplace eq
tion ¹2f l50 ~within the liquid regionr5r l is constant and
may be moved outside the gradient operator!, the voltage at
the top of the drop goes fromf̄ l(top)5V̄51 to f l(top)
5V, the edges of the liquid solution are moved fromR̄51
to R and ¹f l•n̂ remains zero at the liquid/gas interfac
Likewise, the solid potential fieldf̄s only has az component
~approximately!, so if it is stretched byR in the x,y direc-
tions and byh/h̄ in the z direction then it still satisfies
¹2fs5]2fs /]z250; thex,y scaling ensures that points ju
above and below the liquid/solid interface move togeth
and the multiplication of bothf̄ l and f̄s by V means that
f(x,y,z) remains continuous across thez50 liquid/solid in-
terface; finally f(bottom)50 remains true. So the scale
field f l is a permissable solution in the liquid region, andfs

is a permissable solution in the solid region; it only rema
to show that the liquid/solid matching conditionrs]f l /]z
5r l]fs /]z still holds. A stretching and magnifying of th
potential fields creates the following scaled electric fields

E~x,y,z!

55 ¹f l~x,y,z!5
V

R
¹̄f̄ l

u,ĀS x

R
,

y

R
,
z

RD in the liquid

¹fs~x,y,z!5
h̄V

h
¹̄f̄s

u,ĀS x

R
,

y

R
,
h̄z

h
D in the solid.

~A8!

Hence the liquid/solid electric field jump condition is no
written

rs

]f l

]z
5

rsV

R

]f̄ l

] z̄
5

r l h̄V

h

]f̄s

] z̄
5r l

]fs

]z
. ~A9!

But r̄s]f̄ l /] z̄5 r̄ l]f̄s /] z̄ with r̄s / r̄ l5Ā, thus ]f̄s /] z̄

5Ā]f̄ l /] z̄, substituting this into equation~A9! gives, after
rearrangement and cancelation of the]f̄ l /] z̄ term, Ā

5 r̄s / r̄ l5rsh/h̄/r lR. So the last necessary boundary con
tion is still satisfied whenĀ is chosen in this way.
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